• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 8
  • 7
  • 4
  • 3
  • Tagged with
  • 67
  • 67
  • 22
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Quelques aspects du chaos quantique dans les systèmes de N-corps en interaction : chaînes de spins quantiques et matrices aléatoires / Some aspects of quantum chaos in many body interacting systems : quantum spin chains and random matrices

Atas, Yasar Yilmaz 24 September 2014 (has links)
Mon travail de thèse est consacré à l’étude de quelques aspects de la physique quantique des systèmes quantiques à N corps en interaction. Il est orienté vers l’étude des chaînes de spins quantiques. Je me suis intéressé à plusieurs questions relatives aux chaînes de spins quantiques, du point de vue numérique et analytique à la fois. J'aborde en particulier les questions relatives à la structure des fonctions d'onde, la forme de la densité d'états et les propriétés spectrales des Hamiltoniens de chaînes de spins. Dans un premier temps, je présenterais très rapidement les techniques numériques de base pour le calcul des vecteurs et valeurs propres des Hamiltonien de chaînes de spins. Les densités d’états des modèles quantiques constituent des quantités importantes et très simples qui permettent de caractériser les propriétés spectrales des systèmes avec un grand nombre de degrés de liberté. Alors que dans la limite thermodynamique, les densités d'états de la plupart des modèles intégrables sont bien décrites par une loi gaussienne, dans certaines limites de couplage de la chaîne de spins au champ magnétique et pour un nombre de spins N fini sur la chaîne, on observe l’apparition de pics dans la densité d’états. Je montrerais que la connaissance des deux premiers moments du Hamiltonien dans le sous-espace dégénéré associé à chaque pics donne une bonne approximation de la densité d’états. Dans un deuxième temps je m'intéresserais aux propriétés spectrales des Hamiltoniens de chaînes de spins quantiques. L’un des principal résultats sur la statistique spectrale des systèmes quantiques concerne le comportement universel des fluctuations des mesures telles que l’espacement entre valeurs propres consécutives. Ces fluctuations sont bien décrites par la théorie des matrices aléatoires mais la comparaison avec les prédictions de cette théorie nécessite généralement une opération sur le spectre du Hamiltonien appelée unfolding. Dans les problèmes quantiques de N corps, la taille de l’espace de Hilbert croît généralement exponentiellement avec le nombre de particules, entraînant un manque de données pour pouvoir faire une statistique. Ces limitations ont amené l’introduction d’une nouvelle mesure se passant de la procédure d’unfolding basée sur le rapport d’espacements successifs plutôt que les espacements. En suivant l’idée du “surmise” de Wigner pour le calcul de la distribution de l’espacement, je montre comment calculer une approximation de la distribution du rapport d’espacements dans les trois ensembles gaussiens invariants en faisant le calcul pour des matrices 3x3. Les résultats obtenus pour les différents ensembles de matrices aléatoires se sont révélés être en excellent accord avec les résultats numériques. Enfin je m’intéresserais à la structure des fonctions d’ondes fondamentales des modèles de chaînes de spins quantiques. Les fonctions d’onde constituent, avec le spectre en énergie, les objets fondamentaux des systèmes quantiques : leur structure est assez compliquée et n’est pas très bien comprise pour la plupart des systèmes à N corps. En raison de la croissance exponentielle de la taille de l’espace de Hilbert avec le nombre de particules, l’étude des vecteurs propres est une tâche très difficile, non seulement du point de vue analytique mais aussi du point de vue numérique. Je démontrerais en particulier que l’état fondamental de tous les modèles que nous avons étudiés est multifractal avec en général une dimension fractale non triviale. / My thesis is devoted to the study of some aspects of many body quantum interacting systems. In particular we focus on quantum spin chains. I have studied several aspects of quantum spin chains, from both numerical and analytical perspectives. I addressed especially questions related to the structure of eigenfunctions, the level densities and the spectral properties of spin chain Hamiltonians. In this thesis, I first present the basic numerical techniques used for the computation of eigenvalues and eigenvectors of spin chain Hamiltonians. Level densities of quantum models are important and simple quantities that allow to characterize spectral properties of systems with large number of degrees of freedom. It is well known that the level densities of most integrable models tend to the Gaussian in the thermodynamic limit. However, it appears that in certain limits of coupling of the spin chain to the magnetic field and for finite number of spins on the chain, one observes peaks in the level density. I will show that the knowledge of the first two moments of the Hamiltonian in the degenerate subspace associated with each peak give a good approximation to the level density. Next, I study the statistical properties of the eigenvalues of spin chain Hamiltonians. One of the main achievements in the study of the spectral statistics of quantum complex systems concerns the universal behaviour of the fluctuation of measure such as the distribution of spacing between two consecutive eigenvalues. These fluctuations are very well described by the theory of random matrices but the comparison with the theoretical prediction generally requires a transformation of the spectrum of the Hamiltonian called the unfolding procedure. For many-body quantum systems, the size of the Hilbert space generally grows exponentially with the number of particles leading to a lack of data to make a proper statistical study. These constraints have led to the introduction of a new measure free of the unfolding procedure and based on the ratio of consecutive level spacings rather than the spacings themselves. This measure is independant of the local level density. By following the Wigner surmise for the computation of the level spacing distribution, I obtained approximation for the distribution of the ratio of consecutive level spacings by analyzing random 3x3 matrices for the three canonical ensembles. The prediction are compared with numerical results showing excellent agreement. Finally, I investigate eigenfunction statistics of some canonical spin-chain Hamiltonians. Eigenfunctions together with the energy spectrum are the fundamental objects of quantum systems: their structure is quite complicated and not well understood. Due to the exponential growth of the size of the Hilbert space, the study of eigenfunctions is a very difficult task from both analytical and numerical points of view. I demonstrate that the groundstate eigenfunctions of all canonical models of spin chain are multifractal, by computing numerically the Rényi entropy and extrapolating it to obtain the multifractal dimensions.
62

j = 3/2 Quantum spin-orbital liquids / Líquidos spin-orbitais quânticos j = 3/2

Natori, Willian Massashi Hisano 17 August 2018 (has links)
Quantum spin liquids (QSLs) are strongly correlated systems displaying fascinating phenomena like long-range entanglement and fractionalized excitations. The research on these states has since its beginning followed trends generated by the synthesis of new compounds and the construction of new theoretical tools. In coherence with this history, a manifold of new results about QSLs were established during the past decade due to studies on the integrable Kitaev model on the honeycomb lattice. This j = 1/2 model displays bond-dependent and anisotropic exchanges that are essential to stabilize its QSL ground state with Majorana fermion excitations and emergent Z2 gauge field. Even more interestingly, this model is relevant to understand the magnetism of a certain class of 4/5d5 Mott insulators with specific lattice constraints, t2g orbital degeneracy and strong spin-orbit coupling (SOC). This mechanism defining these so-called Kitaev materials can be applied to similar compounds based on transition metal ions in different electronic configurations. In this thesis, I investigate minimal models for two types of 4/5d1 Mott insulators: the ones on the ordered double perovskite structure (ODP) and the ones isostructural to the Kitaev materials. Their effective models generically show bond-dependent and anisotropic interactions involving multipoles of an effective j = 3/2 angular momentum. Such degrees of freedom are conveniently written in terms of pseudospin s and pseudo-orbital τ operators resembling spin and orbital operators of Kugel-Khomskii models with twofold orbital degeneracy. Despite their anisotropy, the two realistic models display continuous global symmetries in the limit of vanishing Hund\'s coupling enhancing quantum fluctuations and possibly stabilizing a QSL phase. Parton mean-field theory was used to propose fermionic QSLs that will be called quantum spin-orbital liquids (QSOLs) due their dependence with s and τ. On ODPs, I studied a chiral QSOL with Majorana fermion excitations and a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. These nodal lines are topological defects of a non-Abelian Berry connection and the system exhibits dispersing surface states. Several experimental responses of the chiral QSOL within the mean-field approximation are compared with the experimental data available for the spin liquid candidate Ba2YMoO6. Moreover, based on a symmetry analysis, I discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for 4/5d1 Mott insulators and show that the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions. The model for materials isostructural to the Kitaev materials has an emergent SU(4) symmetry that is made explicit by means of a Klein transformation on pseudospin degrees of freedom. The model is known to stabilize a QSOL on the honeycomb lattice and instigated the investigation of QSOLs on a generalization of this lattice to three dimensions. Parton mean-field theory was used once again to propose the liquid states, and a variational Monte Carlo (VMC) method was used to compute the energies of the projected wave functions. The numerical results show that the lowest-energy QSOL corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. Further VMC computations also revealed that this state is stable against formation of plaquette ordering (tetramerization). The energy of this QSOL is highly competitive even when Hund\'s coupling induced perturbations are included, as shown by comparison with simple ordered states. Extensions and perspectives for future work are discussed in the end of this thesis. / Líquidos de spin quânticos (QSLs) são sistemas fortemente correlacionados que apresentam fenômenos fascinantes como emaranhamento de longo alcance e excitações fracionárias. A pesquisa a respeito destes estados seguiu tendências geradas pela síntese de novos compostos e construção de novas técnicas teóricas desde seu princípio. Coerentemente com essa história, uma variedade de novos resultados a respeito de líquidos de spin foram estabelecidos na última década graças a estudos feitos sobre o modelo integrável de Kitaev na rede colmeia. Este modelo de spins j = 1/2 apresenta interações de troca anisotrópicas e direcionalmente dependentes que são essenciais para estabilizar um estado fundamental do tipo QSL com férmions de Majorana e campo de gauge Z2 emergente. Ainda mais interessante, este modelo é relevante para se entender o magnetismo de uma certa classe de isolantes de Mott baseados em metais de transição na configuração 4/5d5 em redes específicas, degenerescência orbital t2g e acoplamento spin-órbita forte (SOC). Esse mecanismo que define os chamados materiais do tipo Kitaev podem ser aplicados a compostos baseados em metais de transição em configurações eletrônicas diferentes. Nesta tese, eu investigo modelos mínimos para dois tipos de isolantes de Mott do tipo 4/5d1: os que se apresentam na estrutura perovskita dupla ordenada (ODP) e os isostruturais aos materiais do tipo Kitaev. Seus modelos efetivos genericamente apresentam interações multipolares anisotrópicas e direcionalmente dependentes de um momento angular efetivo j = 3/2. Estes graus de liberdade são convenientemente escritos em termos de operadores de pseudospin s e pseudo-orbital τ semelhantes a operadores de spin e orbital de modelos do tipo Kugel-Khomskii com orbitais duplamente degenerados. A despeito da anisotropia, esses dois modelos realísticos apresentam simetrias globais contínuas no limite de acoplamento de Hund nulo que incrementam flutuações quânticas e possivelmente estabilizam uma fase do tipo QSL. A teoria de campo médio com partons foi usada para propor QSLs fermiônicos que serão chamados de líquidos spin-orbitais quânticos (QSOLs) devido à dependência deles com s e τ. Em ODPs, eu estudei um líquido de spin quiral com excitações do tipo férmion de Majorana e um espectro sem gap caracterizado por linhas nodais ao longo das arestas da zona de Brillouin. Essas linhas nodais são defeitos topológicos de uma conexão de Berry não-abeliana e o sistema apresenta estados de superfície dispersivos. Várias respostas experimentais foram calculadas para o QSOL quiral dentro da aproximação de campo médio e comparadas com os dados experimentais disponíveis para o candidato a líquido de spin Ba2YMoO6. Além disso, baseado em uma análise de simetria, discuto os operadores envolvidos nas amplitudes de espalhamento de raios-x ressonante para isolantes de Mott na configuração 4/5d1 e mostro que seções de choque de RIXS permitem estudar seletivamente os graus de liberdade de pseudospins e pseudo-orbitais. Para o caso particular do líquido spin-orbital quiral, essas seções de choque nos fornecem informações sobre o espectro de diferentes sabores de férmions de Majorana. Esse modelo possui uma simetria SU(4) emergente que é tornada explícita através de uma transformações de Klein nos graus de liberdade de pseudospin. Sabe-se que este modelo estabiliza um QSOL na rede colmeia, o que instigou uma investigação de QSOLs na generalização desta rede em três dimensões. A teoria de campo médio com partons foi usada novamente para propor estes líquidos quânticos, e o método de Monte Carlo Variacional (VMC) foi usado para calcular as energias das funções de onda projetadas. Os resultados numéricos mostraram que o QSOL de menor energia corresponde a um estado de fluxo-zero com superfície de Fermi envolvendo partons fermiônicos de quatro cores. Cálculos adicionais com VMC também demonstraram que este estado é estável à formação de ordem de plaquetas (tetramerização). A energia deste QSOL é altamente competitiva mesmo quando perturbações induzidas pelo acoplamento de Hund são incluídas, o que é mostrado através da comparação com estados ordenados simples. Extensões e perspectivas para trabalhos futuros são discutidas no final desta tese.
63

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 28 October 2014 (has links) (PDF)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
64

j = 3/2 Quantum spin-orbital liquids / Líquidos spin-orbitais quânticos j = 3/2

Willian Massashi Hisano Natori 17 August 2018 (has links)
Quantum spin liquids (QSLs) are strongly correlated systems displaying fascinating phenomena like long-range entanglement and fractionalized excitations. The research on these states has since its beginning followed trends generated by the synthesis of new compounds and the construction of new theoretical tools. In coherence with this history, a manifold of new results about QSLs were established during the past decade due to studies on the integrable Kitaev model on the honeycomb lattice. This j = 1/2 model displays bond-dependent and anisotropic exchanges that are essential to stabilize its QSL ground state with Majorana fermion excitations and emergent Z2 gauge field. Even more interestingly, this model is relevant to understand the magnetism of a certain class of 4/5d5 Mott insulators with specific lattice constraints, t2g orbital degeneracy and strong spin-orbit coupling (SOC). This mechanism defining these so-called Kitaev materials can be applied to similar compounds based on transition metal ions in different electronic configurations. In this thesis, I investigate minimal models for two types of 4/5d1 Mott insulators: the ones on the ordered double perovskite structure (ODP) and the ones isostructural to the Kitaev materials. Their effective models generically show bond-dependent and anisotropic interactions involving multipoles of an effective j = 3/2 angular momentum. Such degrees of freedom are conveniently written in terms of pseudospin s and pseudo-orbital τ operators resembling spin and orbital operators of Kugel-Khomskii models with twofold orbital degeneracy. Despite their anisotropy, the two realistic models display continuous global symmetries in the limit of vanishing Hund\'s coupling enhancing quantum fluctuations and possibly stabilizing a QSL phase. Parton mean-field theory was used to propose fermionic QSLs that will be called quantum spin-orbital liquids (QSOLs) due their dependence with s and τ. On ODPs, I studied a chiral QSOL with Majorana fermion excitations and a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. These nodal lines are topological defects of a non-Abelian Berry connection and the system exhibits dispersing surface states. Several experimental responses of the chiral QSOL within the mean-field approximation are compared with the experimental data available for the spin liquid candidate Ba2YMoO6. Moreover, based on a symmetry analysis, I discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for 4/5d1 Mott insulators and show that the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions. The model for materials isostructural to the Kitaev materials has an emergent SU(4) symmetry that is made explicit by means of a Klein transformation on pseudospin degrees of freedom. The model is known to stabilize a QSOL on the honeycomb lattice and instigated the investigation of QSOLs on a generalization of this lattice to three dimensions. Parton mean-field theory was used once again to propose the liquid states, and a variational Monte Carlo (VMC) method was used to compute the energies of the projected wave functions. The numerical results show that the lowest-energy QSOL corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. Further VMC computations also revealed that this state is stable against formation of plaquette ordering (tetramerization). The energy of this QSOL is highly competitive even when Hund\'s coupling induced perturbations are included, as shown by comparison with simple ordered states. Extensions and perspectives for future work are discussed in the end of this thesis. / Líquidos de spin quânticos (QSLs) são sistemas fortemente correlacionados que apresentam fenômenos fascinantes como emaranhamento de longo alcance e excitações fracionárias. A pesquisa a respeito destes estados seguiu tendências geradas pela síntese de novos compostos e construção de novas técnicas teóricas desde seu princípio. Coerentemente com essa história, uma variedade de novos resultados a respeito de líquidos de spin foram estabelecidos na última década graças a estudos feitos sobre o modelo integrável de Kitaev na rede colmeia. Este modelo de spins j = 1/2 apresenta interações de troca anisotrópicas e direcionalmente dependentes que são essenciais para estabilizar um estado fundamental do tipo QSL com férmions de Majorana e campo de gauge Z2 emergente. Ainda mais interessante, este modelo é relevante para se entender o magnetismo de uma certa classe de isolantes de Mott baseados em metais de transição na configuração 4/5d5 em redes específicas, degenerescência orbital t2g e acoplamento spin-órbita forte (SOC). Esse mecanismo que define os chamados materiais do tipo Kitaev podem ser aplicados a compostos baseados em metais de transição em configurações eletrônicas diferentes. Nesta tese, eu investigo modelos mínimos para dois tipos de isolantes de Mott do tipo 4/5d1: os que se apresentam na estrutura perovskita dupla ordenada (ODP) e os isostruturais aos materiais do tipo Kitaev. Seus modelos efetivos genericamente apresentam interações multipolares anisotrópicas e direcionalmente dependentes de um momento angular efetivo j = 3/2. Estes graus de liberdade são convenientemente escritos em termos de operadores de pseudospin s e pseudo-orbital τ semelhantes a operadores de spin e orbital de modelos do tipo Kugel-Khomskii com orbitais duplamente degenerados. A despeito da anisotropia, esses dois modelos realísticos apresentam simetrias globais contínuas no limite de acoplamento de Hund nulo que incrementam flutuações quânticas e possivelmente estabilizam uma fase do tipo QSL. A teoria de campo médio com partons foi usada para propor QSLs fermiônicos que serão chamados de líquidos spin-orbitais quânticos (QSOLs) devido à dependência deles com s e τ. Em ODPs, eu estudei um líquido de spin quiral com excitações do tipo férmion de Majorana e um espectro sem gap caracterizado por linhas nodais ao longo das arestas da zona de Brillouin. Essas linhas nodais são defeitos topológicos de uma conexão de Berry não-abeliana e o sistema apresenta estados de superfície dispersivos. Várias respostas experimentais foram calculadas para o QSOL quiral dentro da aproximação de campo médio e comparadas com os dados experimentais disponíveis para o candidato a líquido de spin Ba2YMoO6. Além disso, baseado em uma análise de simetria, discuto os operadores envolvidos nas amplitudes de espalhamento de raios-x ressonante para isolantes de Mott na configuração 4/5d1 e mostro que seções de choque de RIXS permitem estudar seletivamente os graus de liberdade de pseudospins e pseudo-orbitais. Para o caso particular do líquido spin-orbital quiral, essas seções de choque nos fornecem informações sobre o espectro de diferentes sabores de férmions de Majorana. Esse modelo possui uma simetria SU(4) emergente que é tornada explícita através de uma transformações de Klein nos graus de liberdade de pseudospin. Sabe-se que este modelo estabiliza um QSOL na rede colmeia, o que instigou uma investigação de QSOLs na generalização desta rede em três dimensões. A teoria de campo médio com partons foi usada novamente para propor estes líquidos quânticos, e o método de Monte Carlo Variacional (VMC) foi usado para calcular as energias das funções de onda projetadas. Os resultados numéricos mostraram que o QSOL de menor energia corresponde a um estado de fluxo-zero com superfície de Fermi envolvendo partons fermiônicos de quatro cores. Cálculos adicionais com VMC também demonstraram que este estado é estável à formação de ordem de plaquetas (tetramerização). A energia deste QSOL é altamente competitiva mesmo quando perturbações induzidas pelo acoplamento de Hund são incluídas, o que é mostrado através da comparação com estados ordenados simples. Extensões e perspectivas para trabalhos futuros são discutidas no final desta tese.
65

Propriétés de transport électronique des isolants topologiques / Electronic transport properties of topological insulators

Adroguer, Pierre 15 February 2013 (has links)
Les travaux présentés dans cette thèse ont pour objectif d’apporter à la physique mésoscopique un éclairage concernant la compréhension des propriétés de transport électroniques d’une classe de matériaux récemment découverts : les isolants topologiques.La première partie de ce manuscrit est une introduction aux isolants topologiques, mettant en partie l’accent sur leurs spécificités par rapport aux isolants "triviaux" : des états de bords hélicaux (dans le cas de l’effet Hall quantique de spin en 2 dimensions) ou de surface relativistes (pour les isolants topologiques tridimensionnels) robustes vis-à-vis du désordre.La deuxième partie propose une sonde de l’hélicité des états de bords de l’effet Hall quantique de spin en étudiant les propriétés remarquables de l’injection de paires de Cooper dans cette phase topologique.La troisième partie étudie la diffusion des états de surface des isolants topologiques tridimensionnels dans le régime cohérent de phase. L’étude de la diffusion, de la correction quantique à la conductance (antilocalisation faible) et de l’amplitude des fluctuations universelles de conductance de fermions de Dirac sans masse est présentée. Cette étude est aussi menée dans la cas d’états de surface dont la surface de Fermi présente la déformation hexagonale observée expérimentalement. / The works presented in this thesis intend to contribute to condensed matter physics in the understanding of the electronic properties of a recently discovered class of materials : the topological insulators.The first part of this memoir is an introduction to topological insulators, focusing on their specifities compared to "trivial" insulators : helical edge states (in the two dimensional quantum spin Hall effect) or relativistic surface states (for three dimensional topological insulators) both robust agiant disorder.The second part proposes a new way to probe the unique properties of the helical edge states of quantum spin Hall effect via the injection of Cooper pair from a superconductor.The third part deals with the diffusion of the three dimensional topological insulator surface states, in the phase coherent regime. The diffusion, the quantum correction to conductivity, and the amplitude of the universal conductance fluctuations are studied. This study is also led in the experimentally relevant case where the Fermi surface presents a hexagonal deformation.
66

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 07 October 2014 (has links)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
67

Dynamique et ergodicité des chaînes de spins quantiques critiques de Fredkin et Ising–Kawasaki

Longpré, Gabriel 12 1900 (has links)
Ce mémoire est composé de deux articles portant respectivement sur les chaînes de spin–1/2 critiques quantiques d’Ising–Kawasaki et de Fredkin. La première chaîne provient d’une chaîne d’Ising classique couplée à un bain thermique par une dynamique de Kawasaki. La deuxième chaîne est une généralisation de la chaîne fortement intriquée de Motzkin. Les deux chaînes sont étudiées avec des conditions frontière périodiques. L’objectif principal est de caractériser la dynamique de ces deux chaînes. D’abord, les exposants critiques dynamiques obtenus suggèrent que, à basse énergie, les deux systèmes comportent de multiples dynamiques. Dans les secteurs à un et deux magnons, nous obtenons un exposant z = 2 pour les deux chaînes. Pour la chaîne d’Ising–Kawasaki, à fort couplage, l’exposant dynamique global est plutôt z = 3. Pour la chaîne de Fredkin, l’exposant dépend de la parité de la longueur de la chaîne. Nous obtenons z = 3.23 ± 0.20 dans le cas pair et z = 2.71 ± 0.09 dans le cas impair. Ensuite, les symétries des systèmes permettent d’obtenir les états propres comme solutions d’ondes de spin dans les secteurs à un et deux magnons. Ces solutions sont présentées pour les deux chaînes et nous étudions leurs continuums de dispersion. Cependant, l’étude de la statistique des niveaux d’énergie indique que de telles solutions ne peuvent être obtenues dans les secteurs de polarisation plus basse. En effet, la distribution des espacements des niveaux d’énergie normalisés dans les secteurs faiblement polarisés correspond à une distribution de Wigner. Selon la conjecture de Berry-Tabor, cela indique que les deux systèmes ne sont pas intégrables. Finalement, pour la chaîne de Fredkin, nous étudions la dispersion des états faiblement excités. Cette dispersion est anomale puisqu’elle dépend de la longueur de la chaîne. En combinant le facteur d’échelle de l’amplitude des branches avec l’exposant dynamique à impulsion fixée, on trouve un exposant dynamique critique z = 2.8. / This thesis is composed of two scientific articles studying respectively the critial quantum spin-1/2 chains of Ising–Kawasaki and Fredkin. The first chain comes from a classical Ising chain coupled to a thermal bath via the Kawasaki dynamic. The second chain is a generalization of the strongly entangled Motzkin chain. The two chains are studied with periodic boundary conditions. The main objective is to characterize the dynamics of these two chains. First, the dynamical critical exponents obtained suggest that, at low energy, the two systems host multiple dynamics. In the one and two magnon sectors, we get an exponent z = 2 for the two chains. For the Ising–Kawasaki chain, at strong coupling, the global dynamical exponent is rather z = 3. For the Fredkin chain, the exponent depends on the parity of the length of the chain. We get z = 3.23 ± 0.20 in the even case and z = 2.71 ± 0.09 in the odd case. Afterwards, the symmetries of the systems make it possible to obtain the eigenstates as spin wave solutions in the one- and two- magnon sectors. These solutions are presented for the two chains and their dispersion continua is studied. However, the study of the statistics of energy levels indicates that such solutions cannot be obtained in lower polarization sectors. Indeed, the distribution of the spacings of the normalized energy levels in the weakly polarized sectors corresponds to a Wigner distribution. According to the Berry-Tabor conjecture, this indicates that the two systems are not integrable. Finally, for the Fredkin chain, we study the dispersion of weakly excited states. This dispersion is anomalous since it depends on the length of the chain. By combining the branch amplitude scaling with the fixed momentum dynamic exponent, we find a dynamical critical exponent z = 2.8.

Page generated in 0.0706 seconds