Spelling suggestions: "subject:"quiver"" "subject:"cuiver""
31 |
The double of representations of Cohomological Hall algebrasXiao, Xinli January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Yan Soibelman / Given a quiver Q with/without potential, one can construct an algebra structure on the cohomology of the moduli stacks of representations of Q. The algebra is called Cohomological Hall algebra (COHA for short). One can also add a framed structure to quiver Q, and discuss the moduli space of the stable framed representations of Q. Through these geometric constructions, one can construct two representations of Cohomological Hall algebra of Q over the cohomology of moduli spaces of stable framed representations. One would get the double of the representations of Cohomological Hall algebras by putting these two representations together. This double construction implies that there are some relations between Cohomological Hall algebras and some other algebras.
In this dissertation, we focus on the quiver without potential case. We first define Cohomological Hall algebras, and then the above construction is stated under some assumptions. We computed two examples in detail: A₁-quiver and Jordan quiver. It turns out that A₁-COHA and its double representations are related to the half infinite Clifford algebra, and Jordan-COHA and its double representations are related to the infinite Heisenberg algebra. Then by the fact that the underlying vector spaces of these two COHAs are isomorphic to each other, we get a COHA version of Boson-Fermion correspondence.
|
32 |
Cohomological Hall algebras and 2 Calabi-Yau categoriesRen, Jie January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Yan S. Soibelman / The motivic Donaldson-Thomas theory of 2-dimensional Calabi-Yau categories can be induced from the theory of 3-dimensional Calabi-Yau categories via dimensional reduction. The cohomological Hall algebra is one approach to the motivic Donaldson-Thomas invariants. Given an arbitrary quiver one can construct a double quiver, which induces the preprojective algebra. This corresponds to a 2-dimensional Calabi-Yau category. One can further construct a triple quiver with potential, which gives rise to a 3-dimensional Calabi-Yau category. The critical cohomological Hall algebra (critical COHA for short) is defined for a quiver with potential. Via the dimensional reduction we obtain the cohomological Hall algebra (COHA for short) of the preprojective algebra. We prove that a subalgebra of this COHA consists of a semicanonical basis, thus is related to the generalized quantum groups. Another approach is motivic Hall algebra, from which an integration map to the quantum torus is constructed. Furthermore, a conjecture concerning some invariants of 2-dimensional Calabi-Yau categories is made.
We investigate the correspondence between the A∞-equivalent classes of ind-constructible 2-dimensional Calabi-Yau categories with a collection of generators and a certain type of quivers. This implies that such an ind-constructible category can be canonically reconstructed from its full subcategory consisting of the collection of generators.
|
33 |
Geometric Realizations of the Basic Representation of the Affine General Linear Lie AlgebraLemay, Joel January 2015 (has links)
The realizations of the basic representation of the affine general linear Lie algebra on (r x r) matrices are well-known to be parametrized by partitions of r and have an explicit description in terms of vertex operators on the bosonic/fermionic Fock space. In this thesis, we give a geometric interpretation of these realizations in terms of geometric operators acting on the equivariant cohomology of certain Nakajima quiver varieties.
|
34 |
Interval Approximations for Fully Commutative Quivers and Their Applications / 完全可換クイバーの区間近似とその応用Xu, Chenguang 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25087号 / 理博第4994号 / 新制||理||1713(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 平岡 裕章, 教授 COLLINSBenoit Vincent Pierre, 教授 坂上 貴之 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
35 |
Variétés de représentations de carquois à boucles / Varieties of representations of quivers with loopsBozec, Tristan 06 June 2014 (has links)
Cette thèse s’articule autour des espaces de modules de représentations de carquois arbitraires, c’est-à-dire possédant d’éventuelles boucles. Nous obtenons trois types de résultats. Le premier concerne la base canonique de Lusztig, dont la définition est étendue à notre cadre, notamment en introduisant une algèbre de Hopf généralisant les groupes quantiques usuels (i.e. associés aux algèbres de Kac-Moody symétriques). On démontre au passage une conjecture faite par Lusztig en 1993, portant sur la catégorie de faisceaux pervers qu’il définit sur les variétés de représentations de carquois.Le second type de résultats, également inspiré par le travail de Lusztig, concerne la base semi- canonique et la variété Lagrangienne nilpotent de Lusztig. Pour un carquois arbitraire, on définit des sous-variétés de représentations semi-nilpotentes Λ(α), et nous montrons qu’elles sont Lagrangiennes. La démonstration repose sur l’existence de fibrations affines partielles entre diverses composantes de Λ(α), contrôlées par une combinatoire précise. Nous définissons une algèbre de convolution de fonctions constructibles sur ⊔Λ(α), et montrons qu’elle possède une base formée de fonctions quasi- caractéristiques des composantes irréductibles des Λ(α). La structure combinatoire qui se dégage ici est analogue à celle obtenue sur les faisceaux pervers de Lusztig, et fait apparaître des opérateurs plus généraux que ceux décrits par les cristaux de Kashiwara.Le troisième thème considéré est celui des variétés carquois de Nakajima, dont l’étude géomé- trique menée ici permet, conjointement avec ce qui est fait précédemment, de donner une définition de cristaux de Kashiwara généralisés. On définit à nouveau des sous-variétés Lagrangiennes, ainsi qu’un produit tensoriel sur leurs composantes irréductibles, comme fait dans le cas classique par Nakajima. / This thesis is about the moduli spaces of representations of arbitrary quivers, i.e. possibly carrying loops. We obtain three types of results. The first one deals with the Lusztig canonical basis, whose definition is here extended to our framework, thanks in particular to the definition of a Hopf algebra generalizing the usual quantum groups (i.e. associated to symmetric Kac-Moody algebras). We also prove a conjecture raised by Lusztig in 1993, which concerns the category of perverse sheaves he defines on varieties of representations of quivers.The second type of results, also inspired by the work of Lusztig, concerns the semicanonical basis. For an arbitrary quiver, we define subvarieties of seminilpotent representations Λ(α), and we show that they are Lagrangian. The proof relies on the existence of partial affine fibrations between some irreducible components of Λ(α), controled by a precise combinatorial structure. We define a convolution algebra of constructible functions on ⊔Λ(α), and show it is equipped with a basis of quasi-characteristic functions of the irreducible components of the Λ(α). The combinatorial structure arising from this construction is analogous to the one obtained on Lusztig perverse sheaves, and yields operators more general than the ones described by Kashiwara crystals.The third considered topic is the one of Nakajima quiver varieties, whose geometric study in this thesis allows, along with the previous (also geometric) work, to define generalized Kashiwara crystals. We define, again, Lagrangian subvarieties, and a tensor product of their irreducible components, as done by Nakajima on the classical case.
|
36 |
Cluster structures for 2-Calabi-Yau categories and unipotent groupsScott, J, Reiten, I, Iyama, O, Buan, A.B. 12 1900 (has links)
No description available.
|
37 |
Det vikingatida bågskyttet i Birka : Ett exempel på en framstående stridskonst med främmande inslagLundström, Fredrik January 2006 (has links)
<p>This paper deals with archery in the Viking Age settlement of Birka and in particular the presence of Euro Asiatic, steppe nomadic archery equipment at the Birka Garrison and one Birka grave. The equipment contains for example closed quivers and a bow case. This paper also contains a discussion of archery battle techniques and tactics in Viking Age Birka and the implications of the above mentioned equipment to this discussion. The analysis insinuates the importance and status of archery in 10th century Birka.</p>
|
38 |
Singularité et théorie de Lie / Singularity and Lie TheoryCaradot, Antoine 14 June 2017 (has links)
Soit Γ un sous-groupe fini de SU2(ℂ). Alors le quotient ℂ2/Γ peut être plongé dans ℂ3 sous la forme d'une surface munie d'une singularité isolée. Le quotient ℂ2/Γ est appelé singularité de Klein, d'après F. Klein qui fut le premier à les décrire en 1884. A travers leurs résolutions minimales, ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types Ar, Dr et Er. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les résolutions et les déformations de ces singularités à l'aide de la théorie de Lie. En 1998 P. Slodowy et H. Cassens ont construit les déformations semiuniverselles des ℂ2/Γ à l'aide de la théorie des carquois ainsi que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989. En théorie de Lie, la classification des algèbres de Lie simples divisent ces dernières en deux classes: les algèbres de Lie de types Ar, Dr et Er qui sont simplement lacées, et celles de types Br, Cr, F4 et G2 appelées non-homogènes. A l'aide d'un second sous-groupe fini Γ' de SU2(ℂ) tel que Γ ⊲ Γ', P. Slodowy a étendu en 1978 la notion de singularité de Klein aux algèbres de Lie non-homogènes en ajoutant à ℂ2/Γ le groupe d'automorphismes Ω= Γ'/Γ du diagramme de Dynkin associé à la singularité. L'objectif de cette thèse est de généraliser la construction de H. Cassens et P. Slodowy à ces singularités de types Br, Cr, F4 et G2. Il en résultera des constructions explicites des déformations semiuniverselles de types inhomogènes sur les fibres desquelles le groupe Ω agit. Le passage au quotient d'une telle application révèle alors une déformation d'une singularité de type ℂ2/Γ' / Let Γ be a finite subgroup of SU2(ℂ). Then the quotient ℂ2/Γ can be embedded in ℂ3 as a surface with an isolated singularity. The quotient ℂ2/Γ is called a Kleinian singularity, after F. Klein who studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection with simply-laced Dynkin diagrams of types Ar, Dr and Er. In the 1970's E. Brieskorn and P. Slodowy took advantage of this connection to describe the resolutions and deformations of these singularities in terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic geometry. In Lie theory, the classification of simple Lie algebras allows for a separation in two classes: those simply-laced of types Ar, Dr and Er, and those of types Br, Cr, F4 and G2 called inhomogeneous. With the use of a second finite subgroup Γ’ of SU2(ℂ) such that Γ ⊲ Γ’, P. Slodowy extended in 1978 the definition of a Kleinian singularity to the inhomogeneous types by adding to ℂ2/Γ the group of automorphisms Ω= Γ’/Γ of the Dynkin diagram associated to the singularity. The purpose of this thesis is to generalize H. Cassens' and P. Slodowy's construction to the singularities of types Br, Cr, F4 and G2. It will lead to explicit semiuniversal deformations of inhomogeneous types on the fibers of which the group Ω acts. By quotienting such a map we obtain a deformation of a singularity ℂ2/Γ’
|
39 |
Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs / Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groupsLiboz, Emilie 03 December 2012 (has links)
Cette thèse présente quelques résultats de la théorie des représentations des algèbres de Cherednikrationnelles en t=0 et traite en particulier des différents ordres construits sur la partition de Calogero-Moserdes groupes imprimitifs.On commence par généraliser au cas abélien certains résultats obtenus par M. Chlouveraki concernant lesblocs d'algèbres en système de Clifford pour un groupe cyclique, puis on construit un ordre sur les C*-pointsfixes d'une variété complexe quasi-projective normale, en utilisant la décomposition de Bialynicki-Birula.Dans la deuxième partie, on s'intéresse à la description des partitions de Calogero-Moser de deux groupesde réflexions complexes K et W quand K est un sous-groupe distingué de W et on généralise au cas abélienles résultats obtenus par G. Bellamy dans le cas d'un quotient W/K cyclique.Dans la troisième partie, on présente les différents ordres, construits par I. Gordon, sur la partition deCalogero-Moser des groupes G(l,1,n) pour certains paramètres : les ordres des a et c-fonctions, un ordrecombinatoire et l'ordre géométrique, qui est défini grâce aux C*-points fixes de certaines variétés decarquois, ces points fixes paramétrant les blocs de la partition de Calogero-Moser de G(l,1,n). On donneensuite les relations entre ces ordres, puis on étend ces constructions ainsi que ces liens à l'ensemble desparamètres.Enfin, dans la dernière partie, on tente de généraliser ces propriétés aux groupes G(l,e,n). On cherche alors,pour construire l'ordre géométrique sur la partition de Calogero-Moser de G(l,e,n), une variété dont les C*-points fixes décrivent les blocs de la partition de G(l,e,n). Dans le cas où e ne divise pas n, on construit lavariété qui nous permet de définir l'ordre géométrique et de le relier aux autres ordres. Pour le cas e divise n,on propose une variété qui pourrait décrire par ses points fixes les blocs de Calogero-Moser de G(l,e,n) etnous permettre de construire l'ordre géométrique. / This work is a contribution to the representation theory of Rational Cherednik Algebras for t=0 and deals inparticular with different orders on the Calogero-Moser partition of imprimitive reflection groups.In the first part, we generalize to the abelian case some results about blocs of algebras in Clifford systemobtained by M. Chlouveraki in the cyclic case, and then we build an order on the C*-fixed points of acomplex, quasi-projective and normal variety, using the Bialynicki-Birula decomposition.The second part deals with the Calogero-Moser partition of two groups K and W, when K is a normalsubgroup of W, and generalize to the abelian case the results that G. Bellamy obtained when the quotientW/K is cyclic.In the third part, we present the different orders that I. Gordon built in the Calogero-Moser partition of thegroups G(l,1,n) and for some parameters : the orders of the a and c-functions, a combinatorial order and thegeometric order, defined using the C*-fixed points of some quiver varieties which parametrise the blocs of theCalogero-Moser partition of G(l,1,n). Then we give some relations between these orders and we extendthese constructions and these links for all parameters.Finally, in the last part, we try to generalize these properties for the groups G(l,e,n). We are looking for avariety whose C*-fixed points describe blocs of G(l,e,n) to construct the geometric order on the Calogero-Moser partition of G(l,e,n). When n is not divided by e, we build this variety that enables us to define thegeometric order and to show all the links with the other orders. When e don't divide n, we suggest a varietywhich could describe the blocs of G(l,e,n) and allow us to build the geometric order.
|
40 |
Det vikingatida bågskyttet i Birka : Ett exempel på en framstående stridskonst med främmande inslagLundström, Fredrik January 2006 (has links)
This paper deals with archery in the Viking Age settlement of Birka and in particular the presence of Euro Asiatic, steppe nomadic archery equipment at the Birka Garrison and one Birka grave. The equipment contains for example closed quivers and a bow case. This paper also contains a discussion of archery battle techniques and tactics in Viking Age Birka and the implications of the above mentioned equipment to this discussion. The analysis insinuates the importance and status of archery in 10th century Birka.
|
Page generated in 0.0281 seconds