221 |
Reconhecimento facial tolerante à variação de pose utilizando uma câmera RGB-D de baixo custo / Face recognition using an low cost RGB-D camera to deal with the problem of pose variationZeni, Luis Felipe de Araujo January 2014 (has links)
Reconhecer a identidade de seres humanos a partir de imagens digitais gravadas de suas faces é uma etapa importante para uma variedade de aplicações que incluem segurança de acesso, iteração humano computador, entretenimento digital, entre outras. Neste trabalho é proposto um novo método automático para reconhecimento facial que utiliza simultaneamente a informação 2D e 3D de uma câmera RGB-D(Kinect). O método proposto utiliza a informação de cor da imagem 2D para localizar faces na cena, uma vez que uma face é localizada ela é devidamente recortada e normalizada para um padrão de tamanho e cor. Posteriormente com a informação de profundidade o método estima a pose da cabeça em relação com à câmera. Com faces recortadas e suas respectivas informações de pose, o método proposto treina um modelo de faces robusto à variação de poses e expressões propondo uma nova técnica automática que separa diferentes poses em diferentes modelos de faces. Com o modelo treinado o método é capaz de identificar se as pessoas utilizadas para aprender o modelo estão ou não presentes em novas imagens adquiridas, as quais o modelo não teve acesso na etapa de treinamento. Os experimentos realizados demonstram que o método proposto melhora consideravelmente o resultado de classificação em imagens reais com variação de pose e expressão. / Recognizing the identity of human beings from recorded digital images of their faces is important for a variety of applications, namely, security access, human computer interation, digital entertainment, etc. This dissertation proposes a new method for automatic face recognition that uses both 2D and 3D information of an RGB-D(Kinect) camera. The method uses the color information of the 2D image to locate faces in the scene, once a face is properly located it is cut and normalized to a standard size and color. Afterwards, using depth information the method estimates the pose of the head relative to the camera. With the normalized faces and their respective pose information, the proposed method trains a model of faces that is robust to pose and expressions using a new automatic technique that separates different poses in different models of faces. With the trained model, the method is able to identify whether people used to train the model are present or not in new acquired images, which the model had no access during the training phase. The experiments demonstrate that the proposed method considerably improves the result of classification in real images with varying pose and expression.
|
222 |
Reconhecimento de fala baseado em HMMNunes, Henrique Ferreira 20 December 1996 (has links)
Orientador: Fabio Violaro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-22T03:55:20Z (GMT). No. of bitstreams: 1
Nunes_HenriqueFerreira_M.pdf: 3451593 bytes, checksum: 3b52e036b0a5e12b0ac02d174adb7126 (MD5)
Previous issue date: 1996 / Resumo: Este trabalho objetiva o desenvolvimento de sistemas de reconhecimento de fala baseados nos modelos ocultos de Markov- HMM (Hidden Markov Models). São descritos três sistemas de reconhecimento de fala desenvolvidos, que resultaram em protótipos demonstrativos da viabilidade técnica destes sistemas. Inicialmente, apresenta-se um reconhecedor de palavras isoladas para vocabulários pequenos, avaliado para os modos de operação multi-Iocutor e independente de locutor. Em seguida, descreve-se um sistema de reconhecimento de seqüências de dígitos faladas de forma contínua. Para este sistema, apresentam-se resultados de desempenho para os modos de operação dependente de locutor, multi-Iocutor e independente de locutor. Por fim, desenvolve-se um reconhecedor de palavras isoladas com vocabulário flexível e irrestrito para o português falado no Brasil. A definição do vocabulário de reconhecimento deste sistema é realizada de forma automática através da simples digitação dos textos ortográfIcos correspondentes às palavras desejadas. O reconhecedor com vocabulário flexível é avaliado apenas para o modo de operação dependente de locutor / Mestrado / Mestre em Engenharia Elétrica
|
223 |
Jogos computacionais fonoarticulatorios para crianças com deficiencia auditivaAraujo, Antonio Marcos de Lima 27 July 2018 (has links)
Orientador: Fabio Violaro / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-27T02:31:02Z (GMT). No. of bitstreams: 1
Araujo_AntonioMarcosdeLima_D.pdf: 2083307 bytes, checksum: d3276a78613fdbb96cbeb5d9c83636e8 (MD5)
Previous issue date: 2000 / Doutorado
|
224 |
Normalização de locutor em sistema de reconhecimento de falaDias, Raquel de Souza Ferreira 28 July 2018 (has links)
Orientador: Fabio Violaro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-28T13:19:36Z (GMT). No. of bitstreams: 1
Dias_RaqueldeSouzaFerreira_M.pdf: 453879 bytes, checksum: 3b408421c3b4b92453ac0dc80111c05b (MD5)
Previous issue date: 2000 / Mestrado
|
225 |
Adaptação de locutor em sistema de reconhecimento de fala continua empregando ¿Eigenvoices¿Sousa, Livio Carvalho 24 September 2004 (has links)
Orientador: Fabio Violaro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T00:34:40Z (GMT). No. of bitstreams: 1
Sousa_LivioCarvalho_M.pdf: 871098 bytes, checksum: 153f38e7d25defc4147ff0417e22add1 (MD5)
Previous issue date: 2004 / Resumo: Neste trabalho realizou-se o estudo da técnica via "eigenvoices"[13] [16][17][18] [30] [31]para adaptação de locutor em um sistema de reconhecimento de fala contínua usando o português do Brasil. Dentre as várias técnicas utilizadas para a adaptação de locutor, incluindo as clássicas MAP ("Maximum A Posteriori'') e MLLR ("Maximum Likelihood Linear Regression''), uma nova técnica, chamada "eigenvoice technique",
foi proposta por Kuhn visando tornar mais rápido o processo de adaptação de locutor para aplicação em sistemas operando em tempo real. No início, estudos se concentraram nas aplicações com palavras isoladas, mas várias pesquisas estão sendo realizadas para a análise dessa técnica em fala contínua, como é o caso deste trabalho. A característica principal da técnica de adaptação via "eigenvoices" é a representação do novo locutor como uma combinação linear de parâmetros ("eigenvoices") obtidos a partir de modelos dependente de locutor previamente treinados. Dessa forma, o novo locutor é representado como um ponto dentro do espaço cujos eixos são formados pelos "eigenvoices". O algoritmo de máxima verossimilhança MLED ("Maximum Likelihood Eigen Decomposition'') foi usado para o cálculo dos coeficientes da combinação linear para a estimação dos parâmetros do novo locutor. Após a realização de testes com número variado de locuções de adaptação e de iterações do algoritmo, foi observado que: para um bom desempenho dos modelos adaptados, 3 a 5 iterações do algoritmo são necessárias; o mais importante não é o número de locuções de adaptação mas sim o seu conteúdo fonético. Em suma, o estudo revelou que a técnica se mostrou eficiente para a aplicação, porém mais pesquisas são necessárias na área / Abstract: In this work a research was made in order to evaluate the use of the eigenvoice technique (13) (16) (17) (18) (30) (31) to speaker adaptation on a continuous speech recognition system. Amongst the severa! speaker adaptation techniques, like the classical MAP and MLLR, a new technique, called eigenvoice technique, was proposed by Kuhn for fast speaker adaptation in real time applications. Firstly, researches were made just on isolated words applications, and nowadays they are focused on continuous speech applications, like this work. The main feature of the eigenvoice technique is the representation of the new speaker by a linear
combination of parameters (eigenvoices) extracted from speaker dependent models previously trained. The new speaker is represented by a point in a space whose axis are the eigenvoices. The Maximum Likelihood Eigen Decomposition (MLED) algorithm was used to calculate the combination coefficients in order to estimate the parameters of the new speaker. After tests varying the number of adaptation sentences and algorithm iterations, it was verified that: for a good adaptation performance, 3 to 5 algorithm iterations are necessary; the number of adaptation sentences is not very important, the more important is the adaptation sentences phonetic contento In conclusion, the eigenvoice technique showed to be efficient for the application on continuous speech, however more studies must be made in the area / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
226 |
Reconhecimento de fala continua usando modelos ocultos de MarkovYnoguti, Carlos Alberto 28 May 1999 (has links)
Orientador: Fabio Violaro / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-25T10:08:22Z (GMT). No. of bitstreams: 1
Ynoguti_CarlosAlberto_D.pdf: 7314962 bytes, checksum: e671f81f57f14d9fcfed0bb6df9699ee (MD5)
Previous issue date: 1999 / Resumo: Nos sistemas que constituem o estado da arte na área de reconhecimento de fala predominam os modelos estatísticos, notadamente aqueles baseados em Modelos Ocultos de Markov (Hidden Markov Models, HMM) Os HMM¿s são estruturas poderosas pois são capazes de modelar ao mesmo tempo as variabilidades acústicas e temporais do sinal de voz. Métodos estatísticos são extremamente vorazes quando se trata de dados de treinamento. Deste modo, nos sistemas de reconhecimento de fala contínua e vocabulário extenso, as palavras são geralmente modeladas a partir da concatenação de sub-unidades fonéticas, pois o número destas é bem menor do que o de palavras, e em uma locução geralmente existem vários exemplos de sub-unidades fonéticas. O reconhecimento de fala contínua difere do de palavras isoladas, pois neste o locutor não precisa fazer pausas entre as palavras. Deste modo, a determinação das fronteiras entre as palavras e do número destas na locução deve ser feita pelo sistema de reconhecimento. Para isto são utilizados os algoritmos de busca, que podem ter ainda modelos de duração e de linguagem incorporados. O objetivo deste trabalho é estudar o problema de reconhecimento de fala contínua, com independência de locutor e vocabulário médio (aproximadamente 700 palavras) utilizando HMM¿s... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: In the field of continuous speech recognition, current state of art systems make use of statistical methods, mainly those based on Hidden Markov Models (HMM). HMM are powerful due to their ability to model both the acoustic and temporal features of speech signals. Statistical methods require lots of training samples. For this reason, large vocabulary, continuous speech recognition systems use word models composed by concatenating subunit models. In this approach there are much fewer subunits than words, and many samples of them in a single utterance. The main difference between continuous speech recognition and isolated words speech recognition is basically in the way that users interact with the system. In isolated words speech recognition, the user needs to make short pauses between works, which is not required for continuous speech recognition systems. The determination of word boundaries, and consequently the number of words in the utterance, take a part of the recognition process in continuous speech recognition systems. For this task searching algorithms are used, and they can also incorporate word duration and language models. The purpose of this work is to study the problem of speaker independent, medium-size vocabulary (about 700 words), continuous speech recognition using HMM¿s... Note: The complete abstract is available with the full electronic digital thesis or dissertations / Doutorado / Doutor em Engenharia Elétrica
|
227 |
Segmentação automatica e treinamento discriminativo aplicados a um sistema de reconhecimento de digitos conectadosFigueiredo, Fabricio Lira 17 December 1999 (has links)
Orientador: Fabio Violaro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-26T00:16:55Z (GMT). No. of bitstreams: 1
Figueiredo_FabricioLira_M.pdf: 8181706 bytes, checksum: 4b3db6624620a5cb43cd1b3304195637 (MD5)
Previous issue date: 1999 / Resumo: Os Modelos Ocultos de Markov constituem, atualmente, a principal abordagem para o problema de Reconhecimento de Fala, pois proporcionam bom desempenho e alto grau de flexibilidade. Infelizmente, este modelo acústico não é ideal e alguns problemas afetam sua robustez e desempenho em condições adversas. A inconsistência do modelamento temporal implícito nos HMM's é um exemplo de um sério problema sem soluções bem definidas. De fato, o Modelo de Duração de Estados com distribuição exponencial é incompatível com o comportamento estatístico das unidades lingüísticas reais. A hipótese de independência entre observações representa outra limitação dos HMM's, já que não se verifica nos experimentos práticos. De fato, existe forte dependência contextual no caso de quadros pertencentes a regiões de transição entre unidades acústicas de uma elocução. Alguns modelos e algoritmos têm sido propostos para tentar transpor estes obstáculos, tais como Modelos Segmentais e Duração Explícita de Estados. Nesta tese, uma estratégia alternativa é proposta para atenuar estes problemas, sem acréscimos significativos no custo computacional. A informação relativa às transições entre fones, ao longo de uma elocução, é obtida através de métodos de segmentação automática. Realiza-se uma ponderação no algoritmo de Viterbi, a fim de penalizar os modelos que gerarem segmentações inconsistentes. Bons resultados são obtidos, para várias condições relacionadas a uma aplicação de Dígitos Conectados. O objetivo atual é aplicar esta técnica para o caso de vocabulários extensos / Abstract: Hidden Markov Model is actually the main approach to Speech Recognition problem, because of the good performance and high degree of flexibility that can be achieved. Unfortunately, this acoustical modeling is not optimum and some problems still affect it's robustness and performance in a more realistic condition. The weakness of the temporal modeling embedded in HMM is an example of a serious problem without well defined solutions. In fact, the implicit state duration model with exponential distribution may not describe the real linguistic units distributions. The hypothesis of independence between observations is other difficult problem to solve and it is incompatible with practical experiments because there is strong correlation between frames in the same acoustic segment. Some models and algorithms have been proposed to overcome or, at lest, attenuate those problems, such as Stochastic Segment Models and Explicit State Duration. This thesis presents an alternative approach to alleviate these problems, with relatively low computational cost. The information on phoneme boundaries in time is obtained through an Automatic segmentation algorithm and it is used in a Weighted Viterbi Algorithm in order to penalize the, models that generates inconsistent segmentations. Good results were achieved for various conditions related to connected digits application. The actual objective is to expand it to continuous speech recognition / Mestrado / Mestre em Engenharia Elétrica
|
228 |
Reconhecimento de palavras manuscritas usando análise multi-vistas. / Recognition of handwritten words using multi-view analysis.OLIVEIRA JÚNIOR, José Josemar de. 14 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-14T17:09:02Z
No. of bitstreams: 1
JOSÉ JOSEMAR DE OLIVEIRA JÚNIOR - TESE PPGEE 2006..pdf: 1171314 bytes, checksum: 0928567e064b5758d1d9df30928e1575 (MD5) / Made available in DSpace on 2018-08-14T17:09:02Z (GMT). No. of bitstreams: 1
JOSÉ JOSEMAR DE OLIVEIRA JÚNIOR - TESE PPGEE 2006..pdf: 1171314 bytes, checksum: 0928567e064b5758d1d9df30928e1575 (MD5)
Previous issue date: 2006-10-30 / Capes / Este trabalho propõe uma metodologia de reconhecimento de palavras manuscritas usando diferentes arquiteturas que são inspiradas nas conclusões obtidas em relação aos mecanismos perceptivos e o processo de leitura humano. Como estudo de caso, a abordagem é aplicada ao problema do reconhecimento de palavras manuscritas que representam os meses do ano. Este problema é relevante pois ocorre com frequência no processamento de cheques bancários, dentre outras aplicações. O sistema de análise multi-vistas proposto é formado pelas seguintes arquiteturas: pseudo-segmentação de radical, pseudo-segmentação fixa e pseudo-segmentação variável. Cada arquitetura é formada por um módulo de extração de primitivas, inspirado em modelos perceptivos e específico para o tipo de segmentação utilizado e por um classificador apropriado. Os testes foram realizados com uma base de palavras construída especificamente
para este fim, também descrita neste trabalho. / This work presente a multiple classifier system applied to the handwritten word recognition
(HWR) probiem. The goal is to investigate the use of perceptual models in the development of recognition systems. The handwritten words are analyzed considering different approximation leveis, in order to get a computational approach of the reading human process. The application proposed is the recognition of the Portuguese handwritten names of the months. The considered system is formed by the following architectures: 2 fixed sub-regions, 8 fixed sub-regions and N variable sub-regions. Each architecture is formed by a module of features extraction, based on perceptual models and specific for each type of segmentation, and an appropriate classifier. The experimental teste have performed on a database specifically built for this probiem, also described in this work.
|
229 |
Sistema de reconhecimento de palavras manuscritas dependente do usuário. / User-defined handwriting recognition system.VELOSO, Luciana Ribeiro. 14 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-14T17:31:43Z
No. of bitstreams: 1
LUCIANA RIBEIRO VELOSO - TESE PPGEE 2009..pdf: 1635341 bytes, checksum: 2d73699d44711c0cc83e60f235f32c94 (MD5) / Made available in DSpace on 2018-08-14T17:31:43Z (GMT). No. of bitstreams: 1
LUCIANA RIBEIRO VELOSO - TESE PPGEE 2009..pdf: 1635341 bytes, checksum: 2d73699d44711c0cc83e60f235f32c94 (MD5)
Previous issue date: 2009-03 / Este trabalho apresenta um sistema de reconhecimento de palavras manuscritas
isoladas dependente do escritor. Este sistema caracteriza-se por utilizar uma etapa de
pré-processamento, que visa corrigir imperfeições e normalizar variações na imagem da
palavra manuscrita, uma etapa de segmentação explícita, que visa dividir a palavra em
caracteres ou segmentos de caracteres, uma etapa de extração de características, que
tem por finalidade representar a imagem por três vetores de características (perceptivas,
globais e direcionais) e um módulo de quantização vetorial, que tem o objetivo
de realizar o mapeamento de um vetor de características em um vetor de observação
(ou vetor de símbolos). Os símbolos correspondem aos índices (dos vetores-código)
gerados na representação (quantização vetorial) da sequência de características com o
uso dos dicionários. Finalizando, tem-se a etapa de classificação realizada por Modelos
Escondidos de Markov, na qual os caracteres são reconhecidos individualmente e combinados para formar a palavra. Testes experimentais foram realizados com uma base
de dados construída especificamente para este fim, contendo amostras de manuscritos
de4escritoresdistintos. Osistemadereconhecimentodepalavrasmanuscritasisoladas
dependente do escritor obteve taxas de reconhecimento que variaram entre 83,31% a
92,96% dependendo do escritor analisado. Os resultados apresentados mostram que
o sistema apresenta um ótimo desempenho quando utilizado para reconhecer palavras
através dos modelos de caracteres. / This work presents a writer-dependent system for isolated handwritten cursive word
recognition. This system is characterized by the utilization of a pre-processing state,
which corrects imperfections and normalizes variations in the word image, an explicit
segmentation stage, which splits the word into characters or character segments, a feature
extraction stage, which represents the image by three feature vectors (perceptive,
global and directional features), and a vector quantization module, which performs the
mapping of a feature vector into an observation vector (or symbols vector). The symbols
correspond to indices (the code vectors) generated by the representation (vector
quantization) of the feature sequences with the use of dictionaries. Finally, there is the
classification stage, performed by Hidden Markov Models, where characters are individually recognized and combined to form a valid word. Experimental tests were conducted with a database specifically built for this problem, containing samples of manuscripts from 4 different writers. The writer-dependent system for isolated handwritten cursive word recognition was recognition rate between 83.31% and 92.96% depending writer analyzed. The results show that the system offers optimum performance when used
word recognize by the characters models.
|
230 |
Métodos para reconhecimento de íris em ambiente não cooperativoSouza, Jones Mendonça de 14 June 2012 (has links)
Made available in DSpace on 2016-06-02T19:05:57Z (GMT). No. of bitstreams: 1
4427.pdf: 8518956 bytes, checksum: 0179ef9750c36082852192a44b3e6834 (MD5)
Previous issue date: 2012-06-14 / Financiadora de Estudos e Projetos / The identification of humans by their iris structure has been explored since 1993, when the first algorithm was made available by John Daugman. Since then, iris recognition systems are widely used for access control of several kinds of environments. Such systems typically requires the user´s cooperation, appropriate lighting conditions, and images obtained in the infra-red band. Dynamic methods for biometric identification has been the subject of studies in the past few years, including iris recognition in non-cooperative environments. This paper proposes a pre-processing methodology to enable iris images classification taken in a noncooperative setting, from users at a certain distance, or while moving. The methodology aims to select images from the visible band containing an acceptable level of noise, and as such being suitable to apply the classification algorithms. Experimental results have shown that images with up to 40% of noise can still be used, suggesting the methodology may be useful as an aid to implement iris recognition systems at distance or in motion. / A identificação de seres humanos pela estrutura da íris vem sendo explorada desde 1993, quando foi disponibilizado o primeiro algoritmo por John Daugman. Desde então, os sistemas de reconhecimento de íris são amplamente utilizados para o controle de acesso de diversas aplicações. Tais sistemas normalmente, requerem a cooperação do usuário, condições de iluminações adequadas, e imagens obtidas na banda infravermelha. Métodos dinâmicos para identificação biométrica tem sido objeto de estudo nos últimos anos, incluindo o reconhecimento de íris em ambientes não cooperativos. Este trabalho propõe uma metodologia de pré-processamento da imagens da íris para classificação de amostras capturadas de forma não cooperativa, a uma certa distância, ou em movimento pelo usuário. A metodologia visa selecionar imagens a partir da banda visível contendo um nível de ruído aceitável, de forma que possa ser eficaz na aplicação dos algoritmos de classificação. Resultados experimentais demostraram que imagens com até 40% de ruído podem ainda ser utilizadas, sugerindo a utilização da metodologia como um auxílio para implementação de sistemas de reconhecimento de íris à distância ou em movimento.
|
Page generated in 0.0348 seconds