• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A versatile approach for combined algae removal and biofouling control in seawater reverse osmosis (SWRO) desalination systems

Alshahri, Abdullah 02 1900 (has links)
The goal of this study was to evaluate the feasibility of using advanced coagulation with Fe(VI) in coagulation-flocculation-sedimentation/ flotation systems for the pretreatment of SWRO desalination plants during algal bloom events. Algal organic matter (AOM) material extracted from marine diatom species (Chaetoceros affinis) was added to Red Sea water to mimic algal bloom conditions. Low dosage of Fe(VI) (<1 mg Fe/L) was very effective at improving feed water quality containing AOM (algal bloom conditions). Based on results from both a bench-scale DAF unit and Jar testing unit, 0.75 mg Fe/L of Fe (VI) proved to be effective at improving the raw water quality which is comparable to the performance of 1 and 3 mg Fe/L of Fe (III). The removal efficiency for both testing units with the use of Fe(VI) was up to 100% for algae , 99.99% for ATP, 99% for biopolymers and 70 % for DOC. The improvement in Fe(VI) performance is related to the simultaneous action of Fe(VI) as oxidant, disinfectant and coagulant. The performance of Fe(VI) coagulant was also evaluated with the use of coagulant aids (clays). The overall turbidity, DOC, biopolymers and algal cells removal was improved via using Fe(VI) and clays at very low dose. Generally, it was found that for the same pretreatment performance achieved, a much lower Fe(VI) dose was required compared to Fe (III), which make it important to study of cost effectiveness for using Fe(VI) instead of Fe(III) and estimate cost savings during algal bloom conditions. A detailed cost comparative study was conducted for Fe(III) vs. Fe(VI) coagulation process based on the removal efficiency. The use of Fe(VI) reduced the total pretreatment cost by 77% and sludge disposal cost by > 88% compared to the use of Fe(III) in the pretreatment process. The use of Fe(VI) reduces the operational and maintenance cost in SWRO desalination plant by 7% and the production cost by 4%. This study proved that the use of Fe(VI) during high turgidity and algal bloom conditions helped providing high raw water quality to the RO process with lower chemicals and operations cost as well as low chlorine and iron residuals.
2

Simulation and optimisation of a medium scale reverse osmosis brackish water desalination system under variable feed quality: Energy saving and maintenance opportunity

Al-Obaidi, Mudhar A.A.R., Alsarayreh, Alanood A., Bdour, A., Jassam, S.H., Rashid, F.L., Mujtaba, Iqbal M. 13 July 2023 (has links)
Yes / In this work, we considered model-based simulation and optimisation of a medium scale brackish water desalination process. The mathematical model is validated using actual multistage RO plant data of Al- Hashemite University (Jordan). Using the validated model, the sensitivity of different operating parameters such as pump pressure, brackish water flow rate and seasonal water temperature (covering the whole year) on the performance indicators such as productivity, product salinity and specific energy consumption of the process is conducted. For a given feed flow rate and pump pressure, winter season produces less freshwater that in summer in line with the assumption that winter water demand is less than that in summer. With the soaring energy prices globally, any opportunity for the reduction of energy is not only desirable from the economic point of view but is an absolute necessity to meet the net zero carbon emission pledge by many nations, as globally most desalination plants use fossil fuel as the main source of energy. Therefore, the second part of this paper attempts to minimise the specific energy consumption of the RO system using model-based optimisation technique. The study resulted not only 19 % reduction in specific energy but also 4.46 % increase in productivity in a particular season of the year. For fixed product demand, this opens the opportunity for scheduling cleaning and maintenance of the RO process without having to consider full system shutdown.
3

Reverse osmosis desalination in a mini renewable energy power supply system

Zhao, Yu January 2006 (has links)
The design, construction and testing of a reverse-osmosis (PV-RO) desalination system for fresh water shortage area is presented. The system operates from salt water or brackish water and can be embedded in a renewable energy power supply system, since many fresh shortage areas are remote and isolated. Special attention is given to the energy efficiency of small-scale reverse osmosis desalination systems. Limitations of conventional control strategy using toggle control are presented. Based on this, an objective of creating a small-scale reverse osmosis desalination system was set out. Initially, the background information is presented. This includes the natural resources crisis and main desalination technologies and the viability of the integration with renewable energy source. A reverse osmosis (RO) desalination system was assembled and set up at the Curtin University of Technology, Perth, Western Australia Supervisor Control And Data Acquisition (SCADA) system was built using a Human Machine Interface software and a programmable logic controller (PLC). Instrumentation that included signal conditioners was made in analysis of the system characteristics. Initial testing of the system was conducted after the system design and configuration was accomplished. Testing results were used as a guideline for the development of the whole system. / Modelling and simulation of the system components in MATLABSimulink is presented, together with a discussion of the control systems modelling and design procedure, in which the aim was to improve the efficiency of the reverse osmosis system. Simulations show the designed reverse osmosis system with Proportional Integral and Derivative (PID) controller has better performance than other controllers. This consequently leads to a lower overall cost of the water, as well as reducing full maintenance cost of the electric drives in the reverse osmosis unit. Additionally, the configuration of the remote control system through General Package Radio System (GPRS) network is depicted. After the PID control algorithm was programmed into the Programmable Logic Controller (PLC), system experiments were carried out in short durations and long durations. System performance was monitored and experimental results prove that the new control strategy applied increase the water productivity and is able to improve the system efficiency up to 35%. Based on the data obtained from the simulations and experiments, Mundoo Island was chosen to be the location for a case study. The electric load profile of the island was derived from the Island Development Committee in Mundoo. / A water demand profile was created and modelled in Matlab to be the input of the reverse osmosis system. The electric load of the reverse osmosis system was generated from Matlab simulation. This result was entered in Hybrid Optimisation Model for Electric Renewables (HOMER) simulator. Having the designed RO unit as one of the electric loads, the entire remote area power supply (RAPS) system was tested in simulations which shows the energy cost is AUS$0.174 per kWh, lower than the Island Development Committee budget estimation of AUS$0.25 per kWh. The cost of the water treatment is very promising at AUS$0.77 per m3.
4

Development of an efficient nano-fluid cooling/preheating system for PV-RO water desalination pilot plant

Shalaby, S.M., Elfakharany, M.K., Mujtaba, Iqbal M., Moharram, B.M., Abosheiasha, H.F. 04 July 2022 (has links)
Yes / In order to improve the performance of the reverse osmosis (RO) desalination plant powered by photovoltaic (PV), two cooling systems were proposed in this study to cool the PV and preheating the RO feed water as well. In the cooling design (1), the cooling fluid flows in direct contact with the back surface of the PV through channels of half circular cross-sections. While in the design (2), it flows through channels of squar cross-sections fixed on the PV back surface. Two nano-fluids were also tested as cooling fluid: H2O/CuO and H2O/Al2O3, in addition to distilled water for the purpose of comparison. The effect of changing the weight concentration of the nano-fluid (0.05, 0.1, and 0.15%) on the PV performance was also investigated. The results showed that the PV integrated with the cooling design (1) achieves better performance compared to design (2) at all studied cooling fluids. The improvements in the electric efficiency of the PV integrated with design (1) reached 39.5, 34.8 and 27.3 % when CuO and Al2O3 nano-fluids and distilled water were used as cooling fluid, respectively, compared to the uncooled PV. Based on the obtained experimental results, the PV integrated with design (1) was selected to power the RO with H2O/CuO nano-fluid of weight concentration 0.15% and flow rate 0.15 kg/s being used as the coolant. The RO powered by the improved PV was tested at different salinities of brackish water when the preheating technique was implemented. The results showed that the proposed PV-RO desalination system produces 366 l/day when brackish water of salinity 3000 ppm was used.

Page generated in 0.0742 seconds