Spelling suggestions: "subject:"radical union"" "subject:"eadical union""
1 |
Taming Highly Unstable Radical Anions Using Flow Microreactors / フローマイクロリアクターによる不安定ラジカルアニオンの反応制御Jiang, Yiyuan 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24435号 / 理博第4934号 / 新制||理||1705(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
2 |
The Reaction Kinetics of Neutral Free Radicals and Radical Ions Studied by Laser Flash PhotolysisFriedline, Robert Alan 30 April 2004 (has links)
t-Butoxyl radical has been used as a chemical model for hydrogen abstractions in many enzymatic and biological systems. However, the question has arisen as to how well this reactive intermediate mimics these systems. In addressing this concern, absolute rate constants and Arrhenius parameters for hydrogen abstraction by t-butoxyl radical were measured for a broad class of substrates including amines, hydrocarbons, and alcohols using laser flash photolysis. Initially, no obvious reactivity relationship between rate constant and substrate structure was observed for these homolytic reactions. However, by closely examining the Arrhenius parameters for hydrogen abstraction, a pattern was revealed. For substrates with C-H bond dissociation energy (BDE) > 92 kcal/mole, activation energy increases with increasing BDE (as expected). However, for substrates with a lower BDE, the activation energy levels out at approximately 2 kcal/mole, essentially independent of structure. Viscosity studies with various solvents were conducted, ruling out the possibility of diffusion-controlled reactions. Entropy rather than enthalpy appears to be the dominating factor at 25°C, contributing to the free energy barrier for these reactions.
Laser flash photolysis was also used to study radical anions. Using an indirect photoexcitation method, the properties of radical anions, generated from aryl ketones, were investigated. These radical anions, such as t-butyl phenyl ketone and cyclopropyl phenyl ketone, measured to have decay rate constants of 1.0 x 106 s-1, although they are known to be persistent when studied electrochemically. They also had measured activation energies around 6.0 kcal/mole and log A values close to 9.5. By extending the molecules's conjugation, the decay rate constants increased to greater than 107 s-1, decreased their activation energy by half, and lowered the log A values to 8.0. This trend was observed in aryl ketones such as trans-1-benzoyl-3-phenyl cyclopropane. It is believed that the generation of a benzyl radical during the decay that facilitates the enhancement of the unimolecular decays. These unimolecular decays were also observed with the previously studied hypersensitive SET probes, 5,7-di-tert-butylspiro[2.5]octa-4,7-dien-6-one and 1,1,-dimethyl-5,7-di-tert-butylspiro[2.5]octa-4,7-dien-6-one. The decay rate constants for these radical anions were measured to be greater than 108 s-1, driven by the formation of an aromatic ring. / Ph. D.
|
3 |
Elimination de substances pharmaceutiques d'effluents urbains par un procédé d'oxydation avancée basé sur le radical sulfate / Elimination of pharmaceutical substances from urban wastewater effluent using sulfate radical based advanced oxidation processMahdi ahmed, Moussa 15 October 2013 (has links)
Ce travail est consacré à l’étude d’un procédé d’oxydation avancée (POA) basé sur la génération de radicaux sulfates (SO4•-) pour l’élimination de substances pharmaceutiques dans le cadre du traitement d’effluents urbains. Quatre substances pharmaceutiques azotées (carbamazépine, diclofénac, sulfaméthoxazole et ciprofloxacine) appartenant à des familles thérapeutiques différentes ont été choisies en tant que contaminants modèles. L’évaluation de la performance cinétique des procédés basés sur la génération de HO• (H2O2/Fe(II) et UV-C/H2O2) et de SO4•- (HSO5-/Co2+, UV-C/S2O82- et UV-C/HSO5-) a été conduite dans des effluents de stations d'épuration traités biologiquement. La comparaison des procédés non photochimiques et photochimiques a été conduite dans les mêmes conditions optimales et montre que les procédés générant des SO4•- sont moins inhibés par la matrice environnementale que les procédés produisant HO•. La réaction de transfert électronique est mise en évidence par l’identification de produits de transformation des contaminants d’étude par chromatographie liquide couplée à un spectromètre de masse à haute résolution. Le début d’oxydation démarre par un transfert d’un électron sur les groupements azotés générant ainsi un radical cation qui réagit avec l’eau ou l’O2. La dégradation du sulfaméthoxazole est le cas le plus évident grâce à sa fonction amine primaire (aniline) qui se transforme en fonction nitro. On peut par conséquent envisager des nouvelles stratégies de traitement des eaux usées urbaines par la génération de SO4•-. / This work is devoted to the study of an alternative advanced oxidation process (AOP) generating sulfate radical (SO4•-) for the removal of pharmaceuticals in municipal wastewater effluents. Four nitrogen containing pharmaceuticals (carbamazepine, diclofenac, sulfamethoxazole and ciprofloxacin) belonging to different therapeutic classes were chosen as model contaminants. The evaluation of the kinetic performance of processes based on the generation of HO• (H2O2/Fe(II) and UV-C/H2O2 ) and SO4•- (HSO5-/Co2+, UV-C/S2O82- and UV-C/HSO5- ) was conducted in biologically treated effluent. Comparison of photochemical and non- photochemical processes performed under the same optimal conditions showed that the processes generating SO4•- are less inhibited by the environmental matrix than processes producing HO•. This electron transfer reaction is demonstrated by the identification of transformation products using liquid chromatography coupled to high resolution mass spectrometer. Oxidation of parent compounds starts by an electron transfer reaction on the nitrogen groups thereby generating a cation radical which further reacts with water or O2. The sulfamethoxazole degradation pathway gives more insights into this mechanism due to the primary amine moiety (aniline) which is converted into nitro function. This treatment system can be regarded as a new strategy for the treatment of urban wastewater contaminated by pharmaceutical residues through the generation of SO4•-.
|
4 |
Oxidative Damage to DNA 2´-Deoxyribose by Carbonate Radicals: Reaction Mechanisms and ProductsMoore, Terence J 01 December 2014 (has links)
The carbonate radical anion (CO3•-, CR) is an important reactive oxygen species produced in vivo by one-electron oxidation of CO2 or bicarbonate, constituents of the major physiological buffer. It was demonstrated for the first time by using an HPLC-based analysis of low-molecular products of DNA damage that CRs react with DNA 2΄-deoxyribose by the hydrogen abstraction mechanism. CRs exhibit a ~ 800-fold preference for one-electron oxidation of guanine over hydrogen abstraction from DNA sugar, in sharp contrast with •OH. CRs also have, as compared to •OH, an increased preference for the H1΄ abstraction, which is the most thermodynamically favorable due to the highest stability of the respective deoxyribosyl radical but kinetically the slowest due to low solvent accessibility, by the expense of the decreased preference for the H5΄ abstraction. All these findings are in agreement with the characteristics of CR as a potent oxidant and selective hydrogen abstractor.
|
5 |
New Paramagnetic Thiazyl Ligands and their Coordination ComplexesMorgan, Ian 22 November 2012 (has links)
A series of 1,2,3-dithiazolyl radicals have been prepared as spin-bearing radical ligands for coordination to paramagnetic transition metal and lanthanide ions to afford both interesting magnetic and potential conductive properties. The novel syntheses and full characterization of the ligands are described with the electronic properties investigated by both solution & solid-state EPR and cyclic voltammetry. The ligand structures are characterized by X-ray crystallography and the magnetic properties investigated. The ligands described herein represent the first reported 1,2,3-dithiazolyl radical ligands to coordinate to paramagnetic transition metal or lanthanide ion(s).
The 1,2,3-dithiazoyl ligands described have been used to prepare a number of metal complexes and the structures have been fully characterized by X-ray crystallography. A diverse range of complexes including monomers, trimers and polymers have been synthesized and characterized. The solid-state and solution magnetic properties of the metal complexes have been investigated using a range of appropriate instrumental techniques, and are reported.
The chelating properties of the 1,2,3-dithiazolyl ligands described are via an unprecedented motif. A para-naphthoquinone backbone is utilized with the fused 1,2,3dithiazolyl heterocyclic ring. The coordination geometry between the nitrogen atom and the quinone oxygen(s) allows for the variety of complexes reported, including the design objective of a polymeric paramagnetic coordination complex.
A series of 1,2,5-thiadiazolyl radical anions have been prepared as spin-bearing radical ligands for the coordination to paramagnetic transition metal and lanthanide ions to enable both interesting magnetic and conductive properties. The syntheses and full characterizations are described with the electronic properties investigated by solution EPR and cyclic voltammetry. The ligand structures are characterized by X-ray crystallography and both the magnetic properties and conductivity (including Extended Hückel Theory calculations) are investigated and reported.
A series of novel fluorinated 1,2,5-thiadiazole closed shell neutral ligands have been prepared and characterized. The radical anion is studied in situ by EPR. All materials generated in the synthesis were sent to the National Cancer Institute (USA) for collaboration involving clinical cancer inhibition studies and the results are reported.
|
6 |
DETOXIFICATION OF SELECTED CHLORO-ORGANICS BY OXIDATION TECHNIQUE USING CHELATE MODIFIED FENTON REACTIONLi, YongChao 01 January 2007 (has links)
The use of hydroxyl radical based reaction (Fenton reaction) for the destruction of organic pollutants has been widely reported in the literature. However, the low pH requirement and rapid hydrogen peroxide consumption rate make the application of conventional Fenton reaction difficult for in-situ treatment. In this study, we conducted a modified Fenton reaction by introducing a chelating agent into the reaction system that could prevent Fe(OH)3 (s) precipitation even at a neutral pH condition and reduce the H2O2 consumption rate by controlling the Fe2+ concentration. A chelating agent (mono-chelate or poly-chelate) combines with Fe2+ or Fe3+ to form stable metal-chelate complexes in solution. This decreases the concentration of Fe2+ in the solution so that reactions can be carried for longer contact times. Experimental results (citrate was the chelating agent) for 2,4,6-trichlorophenol (TCP) showed that TCP degradations were greater than 95% after 2.5 h and 24 h reaction times at fixed pH 5 and 6, respectively. For the same reaction time, the normalized chloride formations were 85% at pH 5 and 88% at pH 6. Several other chlorinated organic compounds were also chosen as the model compounds for detoxification studies because of their chemical structures: trichloroethylene (unsaturated hydrocarbon), carbon tetrachloride (highly oxidized compound), 2,2-dichlorobiphenyl, and biphenyl (a dual-aromatic ring structure). Poly-chelating agents (such as polyacrylic acid-PAA) provide multiple Fe2+/Fe3+ binding sites in the modified Fenton reaction for the oxidation of contaminants (2,2-dichlorobiphenyl, and biphenyl) at a neutral pH environment. Numerical simulation based on the kinetic model developed from the well known Fenton reaction and iron-chelate chemistry fits experiment data well for both standard and chelate modified Fenton reactions. In this dissertation, it was proven that both monomeric (citrate) and polymeric (PAA) chelate modified Fenton reactions were effective for dechlorination of carbon tetrachloride from aqueous phase by the superoxide radical anion. On the other hand, PAA (a poly-chelating agent) can also be used for solid surface modification by polymerization of acrylic acid (monomer). The successful degradations of biphenyl and trichloroethylene by the PAA functionalized silica particles/membrane demonstrate the versatile applications of the chelate modified Fenton reaction.
|
7 |
Rearrangements of Radical Anions Generated from Cyclopropyl KetonesPhillips, Janice Paige 11 November 1998 (has links)
Cyclopropyl-containing substrates have been frequently utilized as "probes" for the detection of SET pathways in organic and biorganic systems. These reactions are based on the cyclorpropylcarbinyl → homoallyl rearrangement, which is fast and essentially irreversible. The implicit assumption in such studies is that if a "radical" species is produced, it will undergo ring opening. We have found that there are two important factors to consider in the design of SET probes: 1) ring strain, the thermodynamic driving force for the rearrangement, and 2) resonance energy, which may help or hinder rearrangement, depending on the specific system. Delocalization of spin and charge were found to be important factors pertaining to substituent effects on the rates of radical anion rearrangements.
Previous studies from our lab have centered on highly conjugated phenyl cyclopropyl ketones. This work considers a series of compounds varying in their conjugative components from a highly conjugated spiro[2.5]octa-4,7-dien-6-one and derivatives to simple aliphatic ketones. Utilizing cyclic, linear sweep voltammetry, and preparative electrolysis techniques, it was discovered that all substrates yielded ring opened products with rates and selectivities that will prove useful and informative in the design of mechanistic probes based on the cyclorpropylcarbinyl → homoallyl rearrangement. Rates of homogeneous electron transfer from a series of hydrocarbon mediators to substrates were measured using homogeneous catalysis techniques. Standard reduction potentials and reorganization energies of substrates were derived using Marcus theory. Conjugative interactions with the cyclopropyl group are discussed. / Ph. D.
|
8 |
UV/Sodium Percarbonate for Treatment of Bisphenol A in WaterGao, Jiong 05 October 2021 (has links)
No description available.
|
9 |
Papel do peroxinitrito na atividade leishmanicida de macrófagos em modelos murinos / Role of peroxynitrite in macrophage leishmanicidal activity in murine modelsLinares, Edlaine 23 September 2003 (has links)
Os mecanismos oxidativos pelos quais macrófagos exercem atividade microbicida permanecem em discussão, e estudos com hospedeiros animais serão essenciais para elucidar tal questão. Nesse trabalho, estudamos os mecanismos microbicidas de macrófagos in vivo comparando parâmetros de infecção nas lesões de camundongos resistentes (C57Bl/6) e suscetíveis (BALB/c) ao protozoário Leishmania amazonensis. A comparação mostrou que o controle da infecção pelos camundongos resistentes é dependente da ativação de macrófagos com expressão da enzima óxido nítrico sintase induzível, síntese de óxido nítrico e extensa nitração e hidroxilação das proteínas dos parasitas dentro dos fagolisossomos dos macrófagos. O principal agente tóxico aos parasitas parece ser derivado do peroxinitrito porque a nitração dos parasitas ocorreu na ausência virtual de células polimorfonucleares e foi acompanhada de hidroxilação. Além disso, tempol um inibidor de reações de nitração mediadas por peroxinitrito, inibiu a nitração de proteínas da lesão e aumentou o número de parasitas nelas presentes. Também, estudos com parasitas em cultura confirmaram que o peroxinitrito é citotóxico aos parasitas enquanto o óxido nítrico é citostático. O camundongo suscetível se mostrou capaz de sintetizar óxido nítrico mas o fez em estágios tardios da infecção e, provavelmente, em resposta a uma infecção secundária por bactérias. Tomados conjuntamente, os resultados indicam que o peroxinitrito e radicais dele derivados são os principais agentes leishmanicidas produzidos por macrófagos in vivo. / Macrophage oxidative microbicidal mechanisms remain debatable and their elucidation is likely to depend on studies with mammalian hosts. To examine macrophage microbicidal mechanisms in vivo, we compared infection parameters in the lesions of resistant (C57Bl/6) and susceptible (BALB/c) mice to the protozoan Leishmania amazonensis. This comparison demonstrated that infection control by resistant mice relied on macrophage activation with inducible nitric oxide synthase expression, nitric oxide synthesis and extensive nitration and hydroxylation of the proteins of the parasites inside macrophage phagolysosomes. The toxic agent to the parasite is likely to be peroxynitrite-derived because parasite nitration occurred in the virtual absence of polymorphonuclear cells and was accompanied by parasite hydroxylation. In addition, tempol, an inhibitor of peroxynitrite-mediated nitrations, inhibited protein nitration of the lesions and increased the number of parasites in them. Also, studies with parasite cultures confmed that peroxynitrite is cytotoxic to the parasites whereas nitric oxide is cytostatic. The susceptible mice were also able to synthesize nitric oxide but only at late infection time and, most likely, in response to a secondary bacterial infection. Taken together, the results indicate that peroxynitrite and derived radicals are the main leishrnanicidal agents produced by macrophages in vivo.
|
10 |
Redução de oxigênio molecular em soluções aquosas através da metodologia de modificação de eletrodos / Reduction of molecular oxygen in aqueous solutions through modifying electrodes\' methodologyZacarias, Nara Alexiou 27 September 2007 (has links)
Este trabalho consistiu de estudos da viabilidade da geração e identificação de radicais livres envolvidos em processos oxidativos avançados por via eletroquímica. Para a geração e identificação de radicais livres em eletrodos modificados com organotióis via eletroquímica, escolheu-se uma técnica pouco aplicada para este fim; a espectroscopia de impedância eletroquímica, e o ajuste dos dados experimentais pela proposta de modelos de circuitos equivalentes. O eletrodo de trabalho utilizado (Au) foi caracterizado em meio ácido e básico e diversas monocamadas auto-organizadas conhecidas foram adsorvidas sobre o mesmo e também caracterizadas por esta técnica. Parâmetros importantes como constante dielétrica, capacitância de uma monocamada livre de defeitos e grau de recobrimento foram determinados com êxito. Também foram empregadas moléculas menos utilizadas como modificadoras de eletrodos (fenotiazinas e derivados). As mesmas foram caracterizadas no sistema Au/adsorvente/NaOH, pois, o pH alto garante a formação do radical superóxido e do ânion hidroperóxido. Os mesmos modelos de circuitos equivalentes puderam ser empregados na obtenção dos parâmetros físicos relativos a essas moléculas no sistema eletroquímico utilizado. Em uma etapa subsequente obteve-se a valiosa informação, se as moléculas adsorvidas sobre Au poderiam ser usadas para a geração de superóxido e outros radicais. As monocamadas de tióis, quando utilizadas para gerar radicais livres, se mostraram aptas a gerar superóxido em meio alcalino saturado com oxigênio molecular. Como se demonstrou na etapa de caracterização, as SAM-3 e SAM-6 não formaram um empacotamento totalmente hidrofóbico. Por este motivo, mesmo que superóxido tenha sido gerado, não pôde ser detectado. Já para a fenotiazina e seu metil-derivado, a cinética de adsorção e a utilização de soluções aquosas impediram a formação de um filme completo e homogêneo, imprescindível para a constituição de uma interface hidrofóbica e isolante. Além disso, possíveis reações de complexação entre as moléculas e superóxido, reações entre a fenotiazina cátion-radical e superóxido fazem necessários mais estudos acerca da natureza eletroquímica do sistema, que já é bastante conhecido fotoquimicamente. Posterior a modificação, todos os eletrodos se mostraram ser bastante sensíveis ao pH e aos eletrólitos utlizados, alterando-se a estrutura interna muito facilmente, o qual implica uma limitação no tempo de uso e reprodutibilidade quando da geração de um radical tão reativo quanto superóxido. / This work consisted in testing the viability of investigations into the electrochemical generation and identification of free radicals involved in advanced oxidative processes. In these studies, a technique which is rarely used for the electrochemical generation and identification of free radicals at organothiole-modified electrodes, electrochemical impedancy spectroscopy, was chosen and the experimental data obtained were fitted by equivalent circuit models. A working electrode (Au) was characterized in both acidic and basic media and several known self-assembled monolayers were adsorbed over this electrode and also characterized using this technique. Important parameters such as dielectric constants, capacitance of the monolayers free of defects and coverage were determined with success. Other lesser-known molecules such as phenothiazines and their derivatives were also used .The modified electrodes were characterized in NaOH solution, since the high pH assures the production of superoxide radicals and hydroperoxylate anions. The equivalent circuit model was employed to obtain physical parameters for these molecules in the electrochemical systems studied. In a subsequent step, a valuable piece of information was obtained; it was noted that the molecules adsorbed over Au could be used in order to generate superoxide and other radicals. The ability of thiol monolayers used in the generation of free radicals, to produce superoxides in alkaline media saturated with molecular oxygen was demonstrated. However, characterization of the self-assembled monolayers, SAM-3 and SAM-6, revealed that these were not able to pack in a completely hydrophobic manner. This may account for the fact that the superoxide could not be detected even when it was believed to have formed. For the phenothiazine-modified electrodes, the adsorption kinetics and the utilization of aqueous solutions prevented the formation of an intact and homogeneous film, which is essential in establishing a hydrophobic and isolating interface. Furthermore, possible complexation reactions between the molecules and the superoxide and reactions between the phenothiazine cation-radical and superoxide, point to the need for further studies regarding the electrochemical nature of this system, whose photochemical properties are very well known. Following modification, all the electrodes were shown to be too sensitive to pH and to the electrolytes used, since the inner structure was easily modified, which implies that they would have a limited time of use and in addition that the reproducibility of the rate of generation of reactive radical species such as superoxides could be compromised.
|
Page generated in 0.0946 seconds