Spelling suggestions: "subject:"radio astronomy."" "subject:"sadio astronomy.""
161 |
A Prototype Platform for Array Feed DevelopmentNagel, James Richard 20 October 2006 (has links) (PDF)
Radio frequency interference (RFI) is a growing problem for radio astronomers. One potential solution utilizes spatial filtering by placing an array of electrically small antennas at the focal plane of a parabolic reflector. This thesis documents the design and characterization of a prototype array feed and RF receiver that were used to demonstrate the spatial filtering principle. The array consists of a 7-element hexagonal arrangement of thickened dipole antennas tuned to a center frequency of 1600 MHz. The receiver is a two-stage, low-noise frequency mixer that is tunable over the entire L-band. This thesis also documents a new receiver design that is part of an upgrade to the outdoor antenna test range for the National Radio Astronomy Observatory in Green Bank, West Virginia. The array feed was demonstrated on a three-meter parabolic reflector by recovering a weak signal of interest that was obscured by a strong, broadband interferer. Similar results were also obtained when the interferer moved with an angular velocity of 0.1 degree per second, but only when the power in the interferer dominated the signal. The aperture efficiency was measured at 64%, but adaptive beamformers can slightly perturb this value through distortions in the beam pattern. This phenomenon, called pattern rumble, effectively reduced the sensitivity of the radio telescope, and was measured by comparing the SNRs of adaptive beamformers to the SNR of a fixed-weight beamformer. It was found that pattern rumble can reduce the useful integration time by roughly one order of magnitude. It was also found that mechanical instability of the primary reflector introduces a great deal of pattern rumble, even when the interferer is fixed in direction.
|
162 |
High-Speed Data Acquisition and FPGA Detected Pulse Blanking System for Interference Mitigation in Radio AstronomyLillrose, Micah Alexander 15 August 2007 (has links) (PDF)
Radio astronomy is the discipline dedicated to the study of celestial emissions in the radio band from a few MHz to 300 GHz. In recent years, spurious emissions from man-made devices that operate at these frequencies have made detection of astronomical signals difficult. These harmful RF transmissions are called radio frequency interference (RFI). One strategy to remove RFI is to apply spatial filtering using an array antenna. This thesis documents the development of a high-speed data acquisition system used to record data from 7- and 19-element phased array feeds. The system supports synchronous sampling over all channels and streams data to disk allowing spatial filtering to be applied in post-processing. The development of a time blanking RFI mitigation system was also developed as part of this thesis. Time blanking is a strategy to remove radar interference by blanking the time intervals corrupted by radar transmissions. The two blanking strategies are time window blanking and detected pulse blanking. This thesis documents the design and implementation of a detected pulse blanking system built using FPGAs. The system employs complex signal processing techniques to detect and excise radar transmissions in real time. This FPGA RFI mitigation system is the first to use a matched filter in pulse detection. Successful radio frequency interference mitigation is demonstrated by removing simulated radar interference from a sinusoidal tone.
|
163 |
Characterization of a Phased Array Feed ModelJones, David A. 03 July 2008 (has links) (PDF)
Creating accurate software based models of phased array feeds (PAFs) is one of many steps to successfully integrating PAFs with current and future radio telescopes, which is a goal of many groups around the globe. This thesis characterizes the latest models of a 19 element hexagonal PAF of dipoles used by the BYU radio astronomy research group and presents comparisons of these models with experimental data obtained using a prototype array. Experiments were performed at the NRAO site in Green Bank, West Virginia, and utilized the outdoor antenna test range and 20 meter radio telescope. Accurate modeling of the PAF requires modeling the signal and noise characteristics of the array, which is a computationally large problem. It also requires accurate modeling of the noise contribution of the receivers connected to the coupled array, which is something that has only recently been understood. The modeled and measured element receive patterns, array impedance matrix, signal and noise correlation matrices, and efficiencies and sensitivities of the PAF are compared and promising levels of agreement are shown. Modeled sensitivity is 30 to 46% larger than measured.
|
164 |
Nineteen-Element Phased-Array Feed Development and Analysis on Effects of Focal Plane Offset and Beam Steering on SensitivityWaldron, Jacob S. 16 July 2008 (has links) (PDF)
Presented herein is the design and construction process in the expansion of BYU's seven-element experimental platform to a nineteen-element platform for phased array feed experiments. The nineteen-element system was deployed at the National Radio Astronomy Observatory (NRAO) in Green Bank West Virginia for use on the Green Bank 20-Meter Telescope. Numerical simulations were performed to determine how sensitivity was affected by electronic beam steering and offset of the phased array feed (PAF) relative to the focal plane of the reflector. These simulated results were then compared to experimental data.
|
165 |
Development of L-Band Down Converter Boards and Real-Time Digital Backend for Phased Array FeedsAsthana, Vikas 10 April 2012 (has links) (PDF)
Recent developments in the field of phased array feeds for radio astronomical reflector antennas, have opened a new frontier for array signal processing for radio astronomy observations. The goal is to replace single horn feeds with a phased array feed, so as to enable astronomers to cover more sky area in less time. The development of digital backend signal processing systems has been a major area of concentration for the development of science-ready phased array feeds for radio astronomers. This thesis focuses on the development of analog down-converter receivers and an FPGA-based digital backend for real-time data processing and analysis support for phased array feeds. Experiments were conducted with new receiver boards and both single-polarization and dual-polarization phased array feeds at the Arecibo Observatory, Puerto Rico and at the 20-meter telescope at Green Bank, WV, and results were analyzed. The experiments were performed as a part of a feasibility study for phased array feeds. The new receiver boards were developed as an upgrade to the earlier connectorized receivers as the number of input channels increased from 19 to 38 and space constraints arose due to the large size of the earlier receivers. Each receiver card has four independent channels on it. The receiver cards were found to have lower cross-coupling between the channels in comparison to the earlier receivers. The development of a FPGA-based real time digital backend focused on a real-time spectrometer, beamformer and a correlator for all the 64-channels using a x64 ADC card and ROACH FPGA boards. The backend can plot results in real time and can stream and store the data on the computers for purpose of post-processing and data analysis. The design process uses libraries and blocks provided by the Center for Astronomy Signal Processing and Electronics Research (CASPER) community.
|
166 |
Introduction to the Development of a Radio Astronomy System at Brigham Young UniversityBlakley, Daniel Robert 01 July 2014 (has links) (PDF)
The intent of this project was founded upon the need to train students in the techniques of radio astronomy with the purpose of establishing a radio telescope in order to teach the principles and practice of radio astronomy.This document describes the theory, research, to establish the 1st generation radio telescope system within the Department of Physics and Astronomy at Brigham Young University. Included are introductions to: (1) The nature of star forming regions in the spiral arm structure of the galaxy, H I (the hydrogen spin-flip transition) and OH MASERS, (2) The of terminology used with the system components and their measurements, (3) The characteristics of the imaging system and its limitations, and (4) Future work and plans. Within the body of this work, I also present an introduction to the purpose, architectural design, as well as a brief description of some of the system level functions and associated equipment that constitute the development infrastructure for the 2nd generation radio astronomy system.The major work accomplished includes history, some of the fundamental theory behind radio astronomy, significant aspects of the theory behind the system, building of the system, its calibration and characteristics as well as next steps
|
167 |
Radio Frequency Interference Cancellation,Appraisal, Detection, and CorrectionLambert, Michael J 01 April 2019 (has links)
Radio Astronomy, the study of distant objects in the radio spectrum, is set at defiance against all other users of the electromagnetic spectrum. Where traditional use would fill the electromagnetic spectrum with as much transmission and information as possible, Radio Astronomy would rather no man-made signals existed. Since that is not possible, they grumble and have to deal with unwanted transmissions impinging upon their instruments. I have demonstrated that subspace projection can remove these unwanted signals from Radio Astronomical data in post processing. I demonstrate it both on simulated data and on data taken from the Very Large Array radio telescope.In the process of implementing the algorithm, I show that the self power terms contain necessary information about the array element responses to RFI sources. While the autocorrelation are not used in the normal synthesis imaging process, my work shows that RFI mitigation using Subspace Projection performs better with the autocorrelations retained when computing projection matrices. Furthermore, I demonstrate that proper data collection allows a significant decrease in error under subspace projection. Potential enhancements to subspace projection are also briefly considered.
|
168 |
Simulating Pulsar Signal Scattering in the Interstellar Medium with Two Distinct Scattering PhenomenaJussila, Adam P. 20 December 2018 (has links)
No description available.
|
169 |
A PHYSICAL DISCUSSION OF THE SINGLE PARABOLIC RADIO TELESCOPE AND THE TWO-TELESCOPE INTERFEROMETERHott, Douglas Allen 11 October 2001 (has links)
No description available.
|
170 |
Extra-Planar HI in the Inner Milky WayPidopryhora, Yurii January 2006 (has links)
No description available.
|
Page generated in 0.063 seconds