• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 1
  • Tagged with
  • 19
  • 19
  • 14
  • 12
  • 12
  • 12
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

50 Jahre Nukleare Analytik in Rossendorf – interdisziplinäre Forschung und Dienstleistungen / 50 Years Radioanalytical Chemistry in Rossendorf – Interdisciplinary Research and Service

Niese, Siegfried 01 October 2013 (has links) (PDF)
Die Nukleare Analytik begann in Rossendorf im Jahr 1957 mit der Anwendung der Indikatormethode für Verteilungsuntersuchungen im Zusammenhang mit der Verarbeitung bestrahlter Kernbrennstoffe. Nach Inbetriebnahme des Forschungsreaktors stand die Entwicklung und Anwendung der Aktivierungsanalyse zur Untersuchung von Halbleitermaterialen sowie geologischer und medizinischer Proben im Mittelpunkt. Zur Verbesserung der Nachweisgrenze von Radionukliden wurden Koinzidenzverfahren entwickelt und eine unterirdische Messkammer eingerichtet. Nach Stilllegung des Forschungsreaktors wurde die Radioaktivität in der Umgebung des ehemaligen Uranbergbaues, in Materialien aus dem Rückbau von Reaktoren und anderen Kernanlagen und anderen natürlichen und technischen Proben bestimmt. / In 1957 the work in radioanalytical chemistry has been started in Rossendorf with the application of the tracer method for investigation of the distribution of nuclides in reprocessing of nuclear fuels. After put into operation of the research reactor the development and application of activation analysis became the main topic. For improvement of the detection limits of radionuclides coincidence methods has been developed and an underground counting room was build. After shut down of the research reactor the radioactivity in the environment of the former uranium mining, and in materials from the decommissioning of reactors and other nuclear equipments and further natural and industrial samples.
12

Umweltradioaktivität - Messung und Überwachung

16 September 2021 (has links)
Radioaktivität gibt es auf der Erde seit ihrer Entstehung und kommt im gesamten Lebensumfeld vor. Derzeit sind ca. 70 natürliche und weit über tausend künstlich erzeugte Radionuklide bekannt. Über einen bestimmten Zeitraum [z. B. eine Stunde (h), ein Jahr (a)], einer Strahlung ausgesetzt sein, heißt exponiert werden. Diese auf den menschlichen Körper einwirkende Strahlenexposition bewirkt die Aufnahme von Strahlungsenergie, die bei Wechselwirkung von Strahlung mit dem Körpergewebe an dieses abgegeben wird. In dieser Publikation wird das Vorkommen von Radioaktivität in der Umwelt und seine unterschiedlichen Auswirkungen auf den Menschen in Sachsen dargestellt. Sie ist eine Einführung in das Thema und richtet sich an die breite Öffentlichkeit. Redaktionsschluss: 30.09.2014
13

50 Jahre Nukleare Analytik in Rossendorf – interdisziplinäre Forschung und Dienstleistungen

Niese, Siegfried 01 October 2013 (has links)
Die Nukleare Analytik begann in Rossendorf im Jahr 1957 mit der Anwendung der Indikatormethode für Verteilungsuntersuchungen im Zusammenhang mit der Verarbeitung bestrahlter Kernbrennstoffe. Nach Inbetriebnahme des Forschungsreaktors stand die Entwicklung und Anwendung der Aktivierungsanalyse zur Untersuchung von Halbleitermaterialen sowie geologischer und medizinischer Proben im Mittelpunkt. Zur Verbesserung der Nachweisgrenze von Radionukliden wurden Koinzidenzverfahren entwickelt und eine unterirdische Messkammer eingerichtet. Nach Stilllegung des Forschungsreaktors wurde die Radioaktivität in der Umgebung des ehemaligen Uranbergbaues, in Materialien aus dem Rückbau von Reaktoren und anderen Kernanlagen und anderen natürlichen und technischen Proben bestimmt. / In 1957 the work in radioanalytical chemistry has been started in Rossendorf with the application of the tracer method for investigation of the distribution of nuclides in reprocessing of nuclear fuels. After put into operation of the research reactor the development and application of activation analysis became the main topic. For improvement of the detection limits of radionuclides coincidence methods has been developed and an underground counting room was build. After shut down of the research reactor the radioactivity in the environment of the former uranium mining, and in materials from the decommissioning of reactors and other nuclear equipments and further natural and industrial samples.
14

The informal German Radium Research Center Brunswick- Wolfenbüttel at the beginning of the 20th century

Niese, Siegfried 13 April 2017 (has links)
Nach der Entdeckung der Radioaktivität und der ersten radioaktiven Elemente durch Henry Becquerel, Marie und Pierre Curie begannen deutsche Wissenschaftler mit Untersuchungen, die zur Entdeckungen weiterer radioaktiven Elemente und der Wirkung und des Charakters der Radioaktivität führten. Dabei war in den ersten Jahren ein Freundeskreis um Justus Elster, Hans Geitel in Wolfenbüttel und Friedrich Giesel in Braunschweig, die ihre wissenschaftliche Arbeit meist neben ihren beruflichen Verpflichtungen durchführten, äußerst produktiv. Dieses interdisziplinäre Zentrum war bereits sehr erfolgreich bevor entsprechende Radiuminstitute in Wien, Paris und an anderen Orten gegründet worden waren. Neben ihrer Forschungen wurden viele andere Wissenschaftler mit radioaktiven Präparaten und wissenschaftlichen Geräten versorgt. / After discovery of radioactivity and radio-active elements by Henry Becquerel, Pierre and Marie Curie German scientists started with investigations, which resulted in the discovery of new radioactive elements and the character and the effects of radioactivity. Very productive have been a circle of friends with Justus Elster, Hans Geitel and Friedrich Giesel in Brunswick and Wolfenbüttel, who have mostly done the scientific work beside their professional duties. This interdisciplinary center was successful working before institutional governmental radium institutes in Vienna, Paris, and other places are founded. Besides their research, other researchers all over the world were delivered with radioactive preparations as well as instruments and glassware that they could start their research about radioactivity.
15

Festlegung und Mobilisierung von Uran und seinen radioaktiven Zerfallsprodukten in kohlenstoffreichen Gewässersedimenten

Nassour, Mohammad 27 May 2014 (has links)
The main aim of this work was to investigate the extent of uranium and radium -fixation and mobilization at the interface of mining influenced surface water and sub-hydric soils, sediment and plant detritus. A freshwater ecosystem (stream channels in an alder swamp forest – Alno-Lemnetum with low residence time shallow ponds) developed directly below a mining site (Neuensalz) and influenced by uranium containing water served as investigation site for the identification of possible fixation and mobilization mechanisms. In addition, investigations were carried out on sediments in a water reservoir downstream of the examined abandoned mining site. It could be shown, that radium concentrations of the examined surface water (2001 – 2004) are only slightly higher compared to the range of geogenic levels for German surface waters, and that its activity concentrations decreased along the investigated flow path. In contrast, uranium concentrations are well above geogenic levels and the concentration level stays high along the whole water pathway through the study area. The U-238:Ra-226 ratio of the examined surface water from the spring to a pond outflow significantly increased. The uranium chain activity concentrations in the sediments determined in this study partly exceeded considerably the regional geogenic level. For the sediment water the 238U: 226Ra ratio in the first part of the flow path is significantly shifted in favor of radium while in the second part the ratio is shifted in favor of uranium. There were indications that the dissolved uranium is transported in the form of soluble carbonate complexes. Radium however is rather fixed under dominantly oxidizing conditions along the mainly turbulent mixed shallow water pathway. The fixation of uranium and radium in the upper section of the pathway (direct below the spring) was found to be inorganically, whereas in the second part organic bonds are more indicated. The influence of allochthonous organic carbon as main metabolic energy source for low order lotic ecosystems on the fixation of uranium was investigated by analyzing, the effects of leaves (coarse particulate organic matter: CPOM) and their degradation products (mainly fine particulate organic matter: FPOM and biofilms etc.). It was found that the highly mobile fraction of uranium in the water pathway, preferably present under the given conditions in the form different uranyl-carbonato-complexes, is efficiently fixed on fresh organic plant material (plant litter, leaves) in the first steps of organic matter decomposition within a few days. But it also can be immobilized relatively stable. It was also found that CPOM is a temporary sink for uranium, which may be sedimented depending on the turbulence flow and discharge. This may contribute to the directional removal of uranium from the water into the sediment. Finally this work analyzed the conditions in the pelagic and benthic zone of the Neuensalz pre dam of the Pöhl reservoir, which is located downstream of the mining site. It presents a periodically stagnant water body with seasonally continuous sedimentation, a possible stable sink of uranium and products of radioactive decay in early diagenesis. Water samples of the pelagic zone and undisturbed sediment cores were taken and analyzed during winter stagnation. The results are discussed in front of seasonal changes in water chemistry and load data. U-238 and Ra-226 showed a culmination of activity concentrations in the sediment horizons from 25 to 35 cm depth, in particular at a centrally located sampling point (K3). At this point highest activity concentrations of 238U were found with a median value of 770 Bq*kg-1 at a depth of 30 cm. At the same location 226Ra shows activity concentrations of 250 Bq*kg-1(median). Based on the Cs-137 dating method a sedimentation rate of 1.5 cm*yr-1 was calculated for the pre-dam Neuensalz sediment. On average sedimentation rates for 238U of 3,7 ± 1,1 kBq*m-2*yr-1 and for 226Ra of 3,5 ± 0,5 kBq*m-2*yr-1 were calculated. Furthermore, a total uranium stock of 68 ± 6 kg per hectare in the sediment was estimated. In connection with a sedimentation period of 23 years, the uranium inventory in the sediments would correspond to a portion of approx. 18 % of the uranium feed by the water influx estimated for the same period. This estimation did not take into account a geogenic portion and other sources like fertilizer. For radium, the situation is reversed. An extrapolation of the cumulative load for the same period results in a lower value by almost a factor of 100 compared to uranium. This compares with a radium inventory in the sediment, which is about 15 times higher than the projected load. This leads to the conclusion that in addition to the supply from the mining legacy also the geogenic background and/or discontinuous particulate import (via storm water stream runoff etc.) has to be considered. The analysis of the bonding stability and related potential mobilization of the sedimentary uranium using sequential chemical extraction shows that most of the uranium is found in the organic fraction over the entire sediment layer, which may be identified as organically bound or as uraninite. In conclusion not only radium is immobilized near to the source but also a relevant share of uranium is permanently fixed even in/on durably deposited organic matter despite eu-trophic conditions with high nitrate load, traceable in deeper sediment layers due to e.g intensive land use.:Inhaltsverzeichnis 1 Einleitung und Zielstellung............................................................1 2 Stand des Wissens.......................................................................7 2.1 Natürliche Radionuklide in der Umwelt............................................7 2.1.1 Uran Vorkommen und Verhalten in der Umwelt..............................9 2.1.2 Radium Vorkommen und Verhalten in der Umwelt........................19 3 Material und Methoden...............................................................22 3.1 Untersuchungsgebiet..................................................................22 3.2 Probenahme und Probenvorbereitung...........................................25 3.2.1 Untersuchungen zur Radionuklidverteilung im Abstrom des ehemaligen Uranbergbaugebiets Neuensalz............................................................25 3.2.2 Untersuchungen zur Uranfixierung an abgebautem organischen Substrat...........................................................................................26 3.2.3 Sedimentbeprobung in der Vorsperre Neuensalz............................29 3.3 Analytische Verfahren.................................................................35 3.3.1 Physikalisch-chemische Charakterisierung der Blattproben..............35 3.3.2 Physikalisch-chemische Charakterisierung der Sedimente................38 3.3.3 Mikrowellenaufschluss ................................................................44 3.3.4 Instrumentalanalytische Verfahren...............................................44 3.4 Mathematische Verfahren...........................................................47 3.4.1 Berechnung der Sedimentationsrate.............................................47 3.4.2 Grafische Darstellung der Daten..................................................47 3.4.3 Statistische Berechnungen..........................................................48 4 Ergebnisse und Diskussion..........................................................49 4.1 Auswirkung zunehmender Einträge von Bestandesabfall auf die Festlegung von Radionukliden.............................................................49 4.1.1 Quellen- und Oberflächenwasser..................................................49 4.1.2 Radioaktivitätskonzentration (238U, 226Ra, 210Pb) im Oberflächenwasser entlang der Fließstrecke..........................................54 4.1.3 Urantransportverhalten im Oberflächenwasser entlang der Fließstrecke......................................................................................56 4.1.4 Räumliche Verteilung von Radionukliden (238U, 226Ra und 210Pb) im Gewässersediment entlang der Fließstrecke..........................................60 4.1.5 Maßgebliche Einflussfaktoren für die Fixierung von Radium im Gewässersediment entlang der Fließstrecke..........................................64 4.1.6 Maßgebliche Einflussfaktoren für die Fixierung von Uran im Gewässersediment entlang der Fließstrecke..........................................65 4.2 Einfluss von allochthonem organischen Kohlenstoff und seinen Abbauprodukten auf die Festlegung von Radionukliden...........................69 4.2.1 Anreicherung der Radionuklide 238U, 226Ra, 210Pb sowie 137Cs an der organischen Substanz (CPOM) während des Abbauprozesses.............69 4.2.2 Organisches Material als Senke für Uran während des Abbauprozesses................................................................................71 4.2.3 Spezifischer Einfluss von partikulärem Material und polymeren Kohlenstoffverbindungen im Verlaufe des Laubabbaus auf die Uranfixierung....................................................................................73 4.2.4 Bedeutung des abiotischen Einflusses auf die Uranfestlegung während des Abbauversuches von Laub im Fließgewässer....................................80 4.2.5 Transportverhalten von Uran während des Abbauversuches im Fließgewässer...................................................................................82 4.3 Sediment der Standgewässer als Senke von Uran und seinen Tochternukliden................................................................................87 4.3.1 Radionuklidkonzentration in rezenten Sedimenten der Vorsperre Neuensalz.........................................................................................87 4.3.2 Einflussfaktoren auf die Verteilung von Uran zwischen dem Porenwasser und der Festphase der Sedimente.....................................98 4.3.3 Bindungsformen von Uran und begleitenden Elementen im Sediment........................................................................................117 5 Zusammenfassende Diskussion, Schlussfolgerungen und Ausblick..124 6 Zusammenfassung...................................................................131 7 Literaturverzeichnis..................................................................137 8 Anhang...................................................................................175 / Hauptziel der vorliegenden Arbeit war die Untersuchung des Umfangs der Festlegung bzw. Mobilisierung von Uran und Radium an der Grenzfläche von Bergbau beeinflußtem Oberflächenwasser und subhydrischen Böden, Sedimenten sowie Bestandsabfall (Detritus). Als Untersuchungsgebiet zur Identifizierung entsprechender Fixierungs- und Mobilisierungsmechanismen diente ein Süßwasser - Ökosystem (Bach in einem Erlenbruchwald – Alno-Lemnetum – und integrierte flache Teiche mit geringer Verweilzeit) unterhalb eines ehemaligen Uranerzbergbau-Gebietes (Neuensalz), das von uranhaltigem Wasser durchströmt ist. Darüber hinaus Sedimentanalysen eines periodisch stagnierenden Wasserkörpers (Vorsperre der Talsperre Pöhl) im Abstrombereich der untersuchten Bergbaualtlast vorgenommen. Es konnte gezeigt werden, dass die Radiumkonzentration des Oberflächenwassers (2001-2004) geringfügig über der des geogenen Niveaus für deutsche Oberflächenwässer liegt und dass die entsprechende Aktivitätskonzentration von Radium entlang der untersuchten Fließstrecke beginnend mit einer Quelle an einem Tailingdamm deutlich abnimmt. Dagegen liegen die Urankonzentrationen des Oberflächenwassers deutlich über dem geogenen Hintergrund. Seine Aktivitätskonzentrationen bleiben entlang der Fließstrecke weitgehend stabil. Das 238U:226Ra-Verhältnis des Oberflächenwassers wird sich entlang der Fließstrecke von der Quelle unterhalb des Tailingdammes bis zum Abfluss aus der ersten, schwächer durchflossenen kleinen Senke (Forellenteich) erhöht. Die in dieser Arbeit ermittelten Aktivitätskonzentrationen der untersuchten Nuklide der Sedimente lagen zum Teil erheblich über dem geogenen Niveau der Region. Das 238U:226Ra-Verhältnis des Bachsediments ist im ersten Teil der Fließstrecke deutlich zugunsten des Radiums verschoben, während es im zweiten Teil zugunsten von Uran verschoben ist. Dies weist darauf hin, dass das gelöste Uran in Form carbonatischer Komplexe transportiert wird. Radium wird dagegen unter den vorherrschenden oxidierenden Bedingungen entlangder Fließstrecke eher fixiert. Für die Festlegung von Uran und Radium wurde im oberen Teil der Fließstrecke (direkt unterhalb der Quelle) eher auf anorganische Bindungen geschlossen, während die Fixierung im zweiten Teil der Fließstrecke eher organischer Natur ist. Da im Oberlauf von Fließgewässern allochthoner organischer Kohlenstoff die wesentliche die Energiequelle für alle Ökosystemfunktionen bildet und eine besondere Funktion mit Blick auf Untersuchungsziel vermutet werden kann, wurde die Wirkung von Laub (grob- organisches Material: CPOM) und seinen Abbauprodukten (fein-partikuläres organisches Material: FPOM, Biofilm usw.) auf die Fixierung von Uran analysiert. Es wurde festgestellt, dass das im Wasserpfad sehr mobile Uran, welches unter den gegebenen Bedingungen vorzugsweise in verschiedenen Uranyl-Carbonato-Komplexen vorliegt, nicht nur an frischer organischer Substanz pflanzlichen Ursprungs (Bestandesabfall, Laub) im Verlauf biologischen Abbaus effizient gebunden und festgelegt wird, sondern auch sehr stabil immobilisiert werden kann. Es wurde auch ermittelt, dass CPOM ein temporärer Speicher für Uran ist, welcher je nach Fließgeschwindigkeit sedimentieren und damit zum gerichteten Transfer von Uran aus dem Wasser in das Sediment beitragen kann. Der anteilige Austrag über das verstärkt gebildete DOC über den Laubeintrag ist relativ gering. Schließlich wurden die Verhältnisse mit Bezug zur Fragestellung in der pelagischen und benthischen Zone der Vorsperre Neuensalz der Talsperre Pöhl analysiert, die stromabwärts des Bergbaugebietes anschießt. Die Vorsperre stellt einen periodisch stagnierenden Wasserkörper mit saisonaler kontinuierlicher Sedimentation dar und damit eine mögliche stabile Senke für Uran und seine radioaktiven Zerfallsprodukte in der Frühdiagenese. Wasserproben der pelagischen Zone und ungestörte Sedimentkerne wurden in der Phase der Winterstagnation entnommen, analysiert und unter Berücksichtigung saisonaler Unterschiede bezüglich Wasserchemie und Frachtdaten disskutiert. Für U-238 und Ra-226 zeigt sich eine Kulmination der Aktivitätskonzentration in den mittleren Sediment- Horizonten von 25-35 cm Tiefe, insbesondere an der Probenahmestelle K3. Dort fanden sich auch die höchsten Aktivitätskonzentrationen der Vorsperre für 238U mit einem Medianwert von 770 Bq*kg-1 in einer Tiefe von 30 cm. Für Ra-226 fand sich am selben Ort eine Aktivität von 250 Bq*kg-1 (Median). Anhand der Datierung mithilfe der Cs-137 Methode wurde für das Sediment der Vorsperre Neuensalz eine Sedimentationsrate von 1,5 cm*a-1 errechnet. Für Uran ergab sich eine Sedimentationsrate von 3,7 ± 1,1 kBq*m-2*a-1 und für Ra-226 eine solche von 3,50 ± 0,5 kBq*m-2*a-1. Darüber hinaus wurde die im Schnitt ca. 40 cm mächtigen Sedimente ein Uranvorrat von 68 ± 6 kg pro Hektar bilanziert. In Verbindung mit der Dauer des Bilanzzeitraumes der Sedimentation (23 Jahre) entspräche das in der Vorsperre vorgefundene Uraninventar einem Anteil von ca. 18 % der für diesen Zeitraum abgeschätzten Uranfracht im Wasserzufluss, wobei der geogene Anteil des Urans und die Ausbringung von Phosphatdüngemitteln in den Sedimenten noch nicht berücksichtigt ist. Für Radium sind die Verhältnisse umgekehrt. Wenn aus den gegenwärtigen Aktivitätskonzentrationen im Zufluss auf eine kumulative Fracht für den 23-jährigen Bilanzierungs- bzw. Betrachtungszeitraum hochgerechnet wird, ergibt sich ein fast um den Faktor 100 geringerer Wert, verglichen mit Uran. Dem steht ein Radiuminventar im Sediment gegenüber, welches etwa 15-mal größer als diese hochgerechnete Fracht ist. Daraus ist abzuleiten, dass neben der relativ geringen wassergelösten Zufuhr aus der Bergbaualtlast dem gegogenen Hintergrund im sedimentierenden Substrat sowie diskontinuierlich Partikel (über Regenwasserabfluss) Bedeutung beizumessen ist. Bei der Analyse der Bindungsverhältnisse des sedimentären Urans (sequentielle Extraktion) wurde der größte Anteil des Urans im Sediment als Uraninit bzw. als organisch gebunden identifiziert. Insgesamt ist zu schließen, dass nicht nur Radium in der Nähe von Quellen immobilisiert wird, sondern auch Uran eine dauerhafte Fixierung in ständig abgelagertem organischem Material erfährt. Diese Fixierung ist trotz eutropher Bedingungen mit hoher Niratbelastung stabil und in tieferen Sedimentschichten nachweisbar.:Inhaltsverzeichnis 1 Einleitung und Zielstellung............................................................1 2 Stand des Wissens.......................................................................7 2.1 Natürliche Radionuklide in der Umwelt............................................7 2.1.1 Uran Vorkommen und Verhalten in der Umwelt..............................9 2.1.2 Radium Vorkommen und Verhalten in der Umwelt........................19 3 Material und Methoden...............................................................22 3.1 Untersuchungsgebiet..................................................................22 3.2 Probenahme und Probenvorbereitung...........................................25 3.2.1 Untersuchungen zur Radionuklidverteilung im Abstrom des ehemaligen Uranbergbaugebiets Neuensalz............................................................25 3.2.2 Untersuchungen zur Uranfixierung an abgebautem organischen Substrat...........................................................................................26 3.2.3 Sedimentbeprobung in der Vorsperre Neuensalz............................29 3.3 Analytische Verfahren.................................................................35 3.3.1 Physikalisch-chemische Charakterisierung der Blattproben..............35 3.3.2 Physikalisch-chemische Charakterisierung der Sedimente................38 3.3.3 Mikrowellenaufschluss ................................................................44 3.3.4 Instrumentalanalytische Verfahren...............................................44 3.4 Mathematische Verfahren...........................................................47 3.4.1 Berechnung der Sedimentationsrate.............................................47 3.4.2 Grafische Darstellung der Daten..................................................47 3.4.3 Statistische Berechnungen..........................................................48 4 Ergebnisse und Diskussion..........................................................49 4.1 Auswirkung zunehmender Einträge von Bestandesabfall auf die Festlegung von Radionukliden.............................................................49 4.1.1 Quellen- und Oberflächenwasser..................................................49 4.1.2 Radioaktivitätskonzentration (238U, 226Ra, 210Pb) im Oberflächenwasser entlang der Fließstrecke..........................................54 4.1.3 Urantransportverhalten im Oberflächenwasser entlang der Fließstrecke......................................................................................56 4.1.4 Räumliche Verteilung von Radionukliden (238U, 226Ra und 210Pb) im Gewässersediment entlang der Fließstrecke..........................................60 4.1.5 Maßgebliche Einflussfaktoren für die Fixierung von Radium im Gewässersediment entlang der Fließstrecke..........................................64 4.1.6 Maßgebliche Einflussfaktoren für die Fixierung von Uran im Gewässersediment entlang der Fließstrecke..........................................65 4.2 Einfluss von allochthonem organischen Kohlenstoff und seinen Abbauprodukten auf die Festlegung von Radionukliden...........................69 4.2.1 Anreicherung der Radionuklide 238U, 226Ra, 210Pb sowie 137Cs an der organischen Substanz (CPOM) während des Abbauprozesses.............69 4.2.2 Organisches Material als Senke für Uran während des Abbauprozesses................................................................................71 4.2.3 Spezifischer Einfluss von partikulärem Material und polymeren Kohlenstoffverbindungen im Verlaufe des Laubabbaus auf die Uranfixierung....................................................................................73 4.2.4 Bedeutung des abiotischen Einflusses auf die Uranfestlegung während des Abbauversuches von Laub im Fließgewässer....................................80 4.2.5 Transportverhalten von Uran während des Abbauversuches im Fließgewässer...................................................................................82 4.3 Sediment der Standgewässer als Senke von Uran und seinen Tochternukliden................................................................................87 4.3.1 Radionuklidkonzentration in rezenten Sedimenten der Vorsperre Neuensalz.........................................................................................87 4.3.2 Einflussfaktoren auf die Verteilung von Uran zwischen dem Porenwasser und der Festphase der Sedimente.....................................98 4.3.3 Bindungsformen von Uran und begleitenden Elementen im Sediment........................................................................................117 5 Zusammenfassende Diskussion, Schlussfolgerungen und Ausblick..124 6 Zusammenfassung...................................................................131 7 Literaturverzeichnis..................................................................137 8 Anhang...................................................................................175
16

Aerogammaspektrometrie 1982–2010 im Erzgebirge

Hertwig, Thomas, Zeißler, Karl-Otto 24 August 2015 (has links) (PDF)
Der Bericht informiert über die Ergebnisse der Auswertung von aerogammaspektrometrischen Befliegungen der Gebiete des ehemaligen Uranerzbergbaus im Freistaat Sachsen in den Jahren 1982 bis 2010. Die Ergebnisse der Datenauswertung zeigen eine übersichtsmäßige Darstellung des Sanierungsfortschrittes an den ehemaligen Uranbergbaustandorten Aue, Johanngeorgenstadt und Zwickau bis zum Jahr 2010 anhand von interpolierten Kartendarstellungen für die Parameter Uran, Thorium und Gamma-Ortsdosisleistung (ODL). Die Veröffentlichung richtet sich sowohl an das Fachpublikum als auch an naturwissenschaftlich interessierte Laien.
17

Aerogammaspektrometrie 1982–2010 im Erzgebirge

Hertwig, Thomas, Zeißler, Karl-Otto 24 August 2015 (has links)
Der Bericht informiert über die Ergebnisse der Auswertung von aerogammaspektrometrischen Befliegungen der Gebiete des ehemaligen Uranerzbergbaus im Freistaat Sachsen in den Jahren 1982 bis 2010. Die Ergebnisse der Datenauswertung zeigen eine übersichtsmäßige Darstellung des Sanierungsfortschrittes an den ehemaligen Uranbergbaustandorten Aue, Johanngeorgenstadt und Zwickau bis zum Jahr 2010 anhand von interpolierten Kartendarstellungen für die Parameter Uran, Thorium und Gamma-Ortsdosisleistung (ODL). Die Veröffentlichung richtet sich sowohl an das Fachpublikum als auch an naturwissenschaftlich interessierte Laien.
18

Zauberstab der Atomwissenschaft

Abele, Johannes 17 April 2014 (has links) (PDF)
No description available.
19

Zauberstab der Atomwissenschaft: Hans Geiger und die Magie der Kerntechnik

Abele, Johannes January 2001 (has links)
No description available.

Page generated in 0.4388 seconds