Spelling suggestions: "subject:"radioisotopes inn hydrology."" "subject:"radioisotopes iin hydrology.""
1 |
The effects of dispersion and mixing on radionuclide dating of groundwaterBitner, Michael J. January 1983 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1983. / Includes bibliographical references (leaves 98-101).
|
2 |
Subsurface neutron production and its impact on ³⁶C1 ground-water datingKuhn, Mark William. January 1984 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1984. / Includes bibliographical references (leaves 52-53).
|
3 |
Isotopic and chemical considerations in radiocarbon dating of groundwater within the arid Tucson Basin, ArizonaWallick, Ed. January 1973 (has links) (PDF)
Thesis (Ph. D. - Geosciences)--University of Arizona. / Includes bibliographical references.
|
4 |
Meteoric 36-Cl in the Contiguous United StatesMoysey, Stephen January 1999 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona. / Includes bibliographical references (leaves 103-114).
|
5 |
The isotope hydrology of the River Dee, North East ScotlandSpeed, Mark January 2011 (has links)
Identifying how the dominant runoff processes of sub-catchments integrate to determine hydrological responses at larger scales (> 1000 km2) remains a major challenge in hydrology. At these larger scales, major environmental differences such as climate, geology and land use may have increased influence on runoff dynamics. While process investigations at smaller scales (< 10km2) have been important in establishing the influence of topography and soils on runoff generation, more research at larger spatial scales is needed, since it is at such scales where important water management decisions are made in relation to applied problems such as floods and droughts. Tracers, such as stable isotopes of water, have proven utility as tools since they reflect the integration of processes at much smaller scales. In addition, geochemical tracers, such as alkalinity, help identify the geographical sources of runoff in larger catchments. This thesis focuses on their use to study catchment hydrological processes in the River Dee (~2,100 km2), NE Scotland, and to determine how these processes integrate at larger scales. Runoff from soil derived hydrological responsive pathways dominates during high flow facilitating a relatively rapid translation of precipitation isotope signatures into the channel network. Increased coverage of responsive soils resulted in reduced Mean Transit Time (MTT) estimates. High coverage of freely draining soils and certain landscape features often resulted in greater MTT estimates. Small scale heterogeneity appears to be averaged out at larger scales with MTTs indicating that the montane headwaters of the river are the dominant source of runoff. Transit Time Distributions (TTDs) suggest that catchment waters may have transit times of less than 2 weeks during high flows and greater than 10 years in summer baseflows.
|
6 |
Isotopic and chemical considerations in radiocarbon dating of groundwater within the arid Tucson Basin, Arizona.Wallick, Ed. January 1973 (has links)
A chemical-isotopic equilibrium model was developed for adjustment of radiocarbon ages of groundwater from the arid Tucson basin for dilution of the initial groundwater C-14 activity by the solution of soil calcite having a C-14 of 25 ± 19% modern. Input to the model consisted of the laboratory chemical analyses for Ca⁺⁺, Mg⁺⁺, Na⁺, H₄SiO₄, SO₄⁼, HCO₃⁻, CO₃⁼, NO₃⁻, and pH, and δ C-13 for the total dissolved carbon in the groundwater. Output consisted of the equilibrium chemical composition of the groundwater, the ratio of soil CO₂ derived to total dissolved carbon, Q, and δ C-13 of total dissolved carbon, H₂CO₃, HCO₃⁻, and CO₃⁼, and δ C-13 for the soil CO₂ and calcite that initially dissolved in the surface water as it equilibrated with soil minerals. Radiocarbon age of the groundwater is computed from the equation T = 8270 ln [(Q + (1-Q) A(CaCO₃)/Am] where T is the age in years before A.D. 1950, A(CaCO₃) is the soil calcite activity and Am is the measured activity for the dissolved carbonate in the groundwater, both with respect to modern wood. The validity of the model was tested by comparing the predicted values for δ C-13 (CO₂), δ C-13 (CaCO₃) with measured values for samples from the Tucson basin. δ C-13 (CO 2) calculated = (-12.9 ± 1.9) per mil PDB. δ C-13 (CO2) measured = (-15.1 ± 2.8) per mil PDB. δ C-13 (CaCO3) calculated = (-3.9 ± 1.7) per nil PDB. δ C-13 (CaCO3) measured = (-3.6 ± 1.7) per mil PDB. On the basis of these results, the model adequately describes the natural system and may prove useful in future radiocarbon dating work in desert regions.
|
7 |
Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129Fabryka-Martin, June Taylor. January 1988 (has links)
Recent years have seen increasing use of atmospheric radionuclides for dating and tracing hydrogeologic processes. Hydrologists often assume that meteoric sources of these nuclides are dominant in ground water and that age-dating methods are limited primarily by analytical detection capability. However, in some cases, subsurface production may also limit the usefulness of these nuclides for dating. Equilibrium radionuclide concentrations are calculated as a function of depth for a variety of rock types. Production mechanisms include fissioning of heavy radionuclides; spallation by cosmic-ray nucleons; capture of neutrons, a-particles, muons and protons; and photonuclear reactions. Calculations indicate that deep subsurface production of ³H, ¹⁴c, ⁸⁵Kr and ⁹⁹Tc is generally below detection but that deep production of ³⁶C1, ³⁹Ar, ⁸¹Kr and ¹²⁹I establishes limits to age-dating of water in most rocks. Parameters for estimating production of ¹⁰Be, ²²Na, ²⁶Al, ³⁷Ar, ³²Si, ⁴¹Ca and ⁷⁹Se are included in appendices. Evidence for in-situ production of ³⁶C1 and ¹²⁹I is presented for two field studies. Concentrations in ground water from the Stripa granite, Sweden, were determined by accelerator mass spectrometry. ¹²⁹I values range from 1,000 to 200,000 atoms/ml, compared to an estimated background concentration in pre-1945 water of 20 atoms/ml. The high levels are attributed to production by spontaneous fission of ²³⁸U in the granite (44 ppm U). ³⁶C1/C1 ratios range from 50-200 x 10 -15 compared to about 40 x 10⁻¹⁵ in meteoric recharge. An increase in ratios with depth has been attributed to production of ³⁶C1 by neutron- capture on ³⁵C1 and is used to set upper limits on the residence time of water in the granite. The validity of using ³⁶C1/C1 ratios as a monitor of deep lithospheric neutron fluxes was tested by measuring the ratios in Cl extracted from Stripa granite. The average ratio, 190 x 10⁻¹⁵, agrees with ratios calculated based on rock chemistry, 190 x 10⁻¹⁵, and on the measured neutron flux, 220 x 10⁻¹⁵. ¹²⁹I and ³⁸C1 were also measured in uranium ores from the Koongarra and Ranger deposits, N.T., Australia. Samples from the oxidized ore zone contain only 6-23% of the ¹²⁹I contents predicted for equilibrium, suggesting preferential loss of ¹²⁹I relative to U during weathering. ³⁶C1 is produced as a result of high neutron fluxes in the ore. Measured ³⁶C1/C1 ratios range from 3 x 10 -12 to 1 x 10⁻¹⁰, corresponding to apparent neutron fluxes of 2 x 10⁵ to 1 x 10⁷/cm²/yr.
|
8 |
Hydrogeology, hydrochemistry and isotope hydrology of Palm Valley, Central AustraliaWischusen, John David Henry, School of Biological, Earth & Environmental Sciences, UNSW January 2005 (has links)
The Palm Valley oasis in arid central Australia is characterised by stands of palm trees (Livistona mariae). How these unique plants, separated by nearly a 1000 kilometres of arid country from their nearest relatives persist, has long fascinated visitors. Defining the hydrogeology of the Hermannsburg Sandstone, a regionally extensive and thick Devonian sequence of the Amadeus Basin that underlies Palm Valley, is the major thrust of investigation. Appraisal of drilling data shows this aquifer to be a dual porosity fractured rock aquifer which, on a regional scale, behaves as a low permeability, hydraulically continuous resource. Groundwater is low salinity (TDS <1000 mg/L) and bicarbonate rich. Slight variations in cation chemistry indicate different flow paths with separate geochemical histories have been sampled. Stable isotope (????H, ???????O) results from Palm Valley show groundwater to have a uniform composition that plots on or near a local meteoric water line. Radiocarbon results are observed to vary from effectively dead (< 4%) to 87 % modern carbon. To resolve groundwater age beyond the radiocarbon window the long lived radioisotope 36Cl was also used. Ratios of 36Cl/Cl range from 130 to 290 x 10-15. In this region atmospheric 36Cl/Cl ratio is around 300 x 10-15. Thus an age range of around 300 ka is indicated if, as is apparent, radioactive decay is the only significant cause of 36Cl/Cl variation within the aquifer. A review of previous, often controversial, 36Cl decay studies shows results are usually ambiguous due to lack of certainty when factoring subsurface Cl- addition into decay calculations. Apparently, due to the thickness of the Hermannsburg Sandstone, no subsurface sources of Cl- such as aquitards or halites, are encountered along groundwater flow paths, hence the clear 36Cl decay trend seen. The classic homogenous aquifer with varying surface topography, the "Toth" flow model, is the simplest conceptual model that need be invoked to explain these isotope data. Complexities, associated with local topography flow cells superimposed on the regional gradient, signify groundwater with markedly different flow path lengths has been sampled. The long travel times (> 100 ka) indicate groundwater discharge would endure through arid phases associated with Quaternary climate oscillations. Such a flow system can explain the persistence of this arid zone groundwater-dependent ecosystem and highlight the possibility that Palm Valley has acted as a flora refuge since at least the mid- Pleistocene.
|
9 |
Hydrogeology, hydrochemistry and isotope hydrology of Palm Valley, Central AustraliaWischusen, John David Henry, School of Biological, Earth & Environmental Sciences, UNSW January 2005 (has links)
The Palm Valley oasis in arid central Australia is characterised by stands of palm trees (Livistona mariae). How these unique plants, separated by nearly a 1000 kilometres of arid country from their nearest relatives persist, has long fascinated visitors. Defining the hydrogeology of the Hermannsburg Sandstone, a regionally extensive and thick Devonian sequence of the Amadeus Basin that underlies Palm Valley, is the major thrust of investigation. Appraisal of drilling data shows this aquifer to be a dual porosity fractured rock aquifer which, on a regional scale, behaves as a low permeability, hydraulically continuous resource. Groundwater is low salinity (TDS <1000 mg/L) and bicarbonate rich. Slight variations in cation chemistry indicate different flow paths with separate geochemical histories have been sampled. Stable isotope (????H, ???????O) results from Palm Valley show groundwater to have a uniform composition that plots on or near a local meteoric water line. Radiocarbon results are observed to vary from effectively dead (< 4%) to 87 % modern carbon. To resolve groundwater age beyond the radiocarbon window the long lived radioisotope 36Cl was also used. Ratios of 36Cl/Cl range from 130 to 290 x 10-15. In this region atmospheric 36Cl/Cl ratio is around 300 x 10-15. Thus an age range of around 300 ka is indicated if, as is apparent, radioactive decay is the only significant cause of 36Cl/Cl variation within the aquifer. A review of previous, often controversial, 36Cl decay studies shows results are usually ambiguous due to lack of certainty when factoring subsurface Cl- addition into decay calculations. Apparently, due to the thickness of the Hermannsburg Sandstone, no subsurface sources of Cl- such as aquitards or halites, are encountered along groundwater flow paths, hence the clear 36Cl decay trend seen. The classic homogenous aquifer with varying surface topography, the "Toth" flow model, is the simplest conceptual model that need be invoked to explain these isotope data. Complexities, associated with local topography flow cells superimposed on the regional gradient, signify groundwater with markedly different flow path lengths has been sampled. The long travel times (> 100 ka) indicate groundwater discharge would endure through arid phases associated with Quaternary climate oscillations. Such a flow system can explain the persistence of this arid zone groundwater-dependent ecosystem and highlight the possibility that Palm Valley has acted as a flora refuge since at least the mid- Pleistocene.
|
10 |
Solute transport in saturated fractured mediaRasmussen, Todd Christian. January 1982 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1982. / Includes bibliographical references (leaves 58-61).
|
Page generated in 0.0747 seconds