Spelling suggestions: "subject:"rareearth"" "subject:"researth""
131 |
Photoluminescent mechanism of trivalent lanthanide organic complexesLi, King Fai 01 January 2002 (has links)
No description available.
|
132 |
Unraveling Recrystallization Mechanisms Governing Texture Development from Rare Earth Element Additions to MagnesiumImandoust, Aidin 11 August 2017 (has links)
The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermomechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into lowangle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within RE grains favored their growth by setting the boundary migration direction toward grains with higher dislocation density, thereby decreasing the system energy. We investigated the influence of RE elements on extension twinning induced hardening. RE addition enhanced tensile twinning induced hardening significantly. EBSD analysis illustrated that tensile twins cross low angle grain boundaries in Mg-RE alloys, which produced large twins and facilitated transmutation of basal to prismatic dislocations. Higher activity of pyramidal II dislocations in Mg-RE alloys resulted in higher twinning induced hardening.
|
133 |
Magnetism and magnetic excitations in narrow band metals and rare-earth compoundsBahurmuz, Abdulrahim A. January 1976 (has links)
No description available.
|
134 |
Group 3 Metal Complexes of Rigid Neutral and Monoanionic Pincer LigandsVasanthakumar, Aathith January 2020 (has links)
The synthesis of a rigid 4,5-bis(triphenylphosphinimino)-2,7-di-tert-butyl-9,9-dimethylxanthene (Ph3PN)2XT (1) ligand is outlined, along with a modified synthesis for previously reported 1,8-bis(triphenylphosphinimino)naphthalene (Ph3PN)2NAP (3). Reaction of neutral (Ph3PN)2XT with [Y(CH2SiMe3)3(THF)2] resulted in double cyclometallation, yielding the base-free monoalkyl complex, [({Ph2(C6H4)PN}2XT)Y(CH2SiMe3)] (2). Layering a concentrated THF solution of 2 with hexanes at −28 °C afforded THF-coordinated [({Ph2(C6H4)PN}2XT) Y(CH2SiMe3)(THF)]·2THF (2-THF·2THF), with a distorted pentagonal bipyramidal geometry and approximately meridional coordination of the pentadentate {Ph2(C6H4)PN}2XT dianion. Similarly, (Ph3PN)2NAP reacted with [Y(CH2SiMe3)3(THF)2] to afford a THF-coordinated monoalkyl complex, [{(Ph2(C6H4)PN)2NAP}Y(CH2SiMe3)(THF)] (4-THF). Layering a DME solution of 4-THF with hexanes at −28 °C afforded X-ray quality crystals of [{(Ph2(C6H4)PN)2NAP}Y(CH2SiMe3)(κ2-DME)]·hexane (4-DME·hexane), with a highly distorted pentagonal bipyramidal geometry and a facial coordination mode of the tetradentate {Ph2(C6H4)PN}2NAP dianion
The synthesis of a rigid 4,5-bis(1,3-diisopropylimidazol-2-imine)-2,7,9,9-tetramethylacridan H(AII2) ligand (5) was achieved via a Buchwald-Hartwig cross-coupling reaction. Reaction of the proligand H(AII2) with [M(CH2SiMe3)3(THF)2] (M = Y(6), Sc(8)) yielded the base free dialkyl complexes [(AII2)Y(CH2SiMe3)2] (6) and [(AII2)Sc(CH2SiMe3)2] (8). The reaction of 6 with one equivalent of [CPh3][B(C6F5)4] yielded [(AII2)Y(CH2SiMe3)][B(C6F5)4] (7) in-situ. Complex 7 proved to be a potent intramolecular hydroamination catalyst for a variety of aminoalkane substrates.
The attempted synthesis of 4,5-bis(1,3-diisopropylimidazol-2-imine)-2,7-di-tert-butyl-9,9-dimethylxanthene (XII2) via the Staudinger reaction resulted in the isolation of the triazene intermediate 4,5-bis(1,3-diisopropylimidazol-2-yliedene{triazene})-2,7-di-tert-butyl-9,9-dimethylxanthene XIA2 (9). Reaction of XIA2 with one equivalent of [Y(CH2SiMe3)3(THF)2] led to the isolation of [(XIA2)Y(CH2SiMe3)3] (10). Synthesis of XII2 (11) was achieved via a Buchwald-Hartwig cross-coupling reaction. Reaction of XII2 with one equivalent of YCl3(THF)3.5 resulted in the isolation of [(XII2)YCl3] (12). In contrast, the reaction of XII2 with one equivalent of [Y(CH2SiMe3)3(THF)2] led to several unidentified products. Reaction of XII2 with 1 equivalent of [H(Et2O)2][B(C6F5)4] led to the isolation of the precursor [H(XII)2][B(C6F5)4] (13). The reaction of 13 with 1.1 equivalents of [M(CH2SiMe3)3(THF)2] (M = {Y(14), Sc(15)} led to the isolation of the monocationic [(XII)2M(CH2SiMe3)2][B(C6F5)4] complexes. The reaction of [(XII)2Sc(CH2SiMe3)2][B(C6F5)4] with 1.1 equivalents of B(C6F5)3 led to the abstraction of a methyl anion from the silicon center, with concomitant migration of the remaining alkyl group to the positively charged silicon, forming a new CH2SiMe2CH2SiMe3 alkyl group. This process is accompanied by MeB(C6F5)3 anion formation, forming a contact ion pair to afford the dicationic species [(XII)2Sc(CH2SiMe3)][MeB(C6F5)3][B(C6F5)4] 16. In contrast, the reaction of 15 with 1.3 equivalents of [CPh3][B(C6F5)4] in the presence of 5 equivalents of toluene resulted in the synthesis of [(XII)2Sc(CH2SiMe3)(ɳx-toluene)][B(C6F5)4]2 17 in-situ. Complex 17 is a highly potent ethylene polymerization catalyst with an activity of 868 kg/mol·atm·h. The reaction of 15 with [HNMe2Ph][B(C6F5)4] led to the cyclometallation of the resulting NMe2Ph byproduct to yield [(XII2)Sc(C6H4NMe2)][B(C6F5)4]2 (18) in-situ.
The synthesis of a rigid, asymmetric 4-(1,3-diisopropylimidazol-2-imine)-5-(2,6-diisopropylanilido)- 2,7-di-tert-butyl-9,9-dimethylxanthene XAI (19) ligand was achieved by a two step Buchwald-Hartwig cross-coupling reaction with initial cross coupling of 1,3-diisopropylimidazol-2-imine followed by the cross-coupling of 2,6-diisoproylaniline. The reaction of XAI with 1.1 equivalents of [Y(CH2SiMe3)3(THF)2] yielded [(XAI)Y(CH2SiMe3)2] (20). Subsequent reaction of [(XAI)Y(CH2SiMe3)2] with 1 equivalent of [CPh3][B(C6F5)4] in the presence of 10 equivalents of toluene resulted in the synthesis of the toluene coordinated [(XAI)Y(CH2SiMe3)(ɳx-toluene)][B(C6F5)4] (21) complex. Similar to 7, complex 21 was highly active for intramolecular hydroamination of various substrates. / Dissertation / Doctor of Philosophy (PhD) / Cationic group 3 alkyl complexes are underreported in comparison to analogous group 4 complexes. The scarcity of these complexes can be attributed to their propensity to engage in undesirable reactions such as ligand redistribution and cyclometallation. To increase the thermal stability of such complexes, design features, such as carefully positioned steric bulk and ligand rigidity are beneficial. Additionally, such ligands must also have considerable donor ability, in order to stabilize inherently electron deficient cationic metal centers. This work details the synthesis of a variety of neutral and monoanionic ligands that incorporate the aforementioned design features, which were utilized in the successful synthesis of a variety of neutral, monocationic and extremely rare dicationic group 3 alkyl complexes. The cationic monoalkyl complex in this work proved to be a highly potent intramolecular hydroamination catalyst. Furthermore, a rare dicationic scandium complex was highly active for ethylene polymerization
|
135 |
A study of rare-earth doped silicon based films as a luminescent downshifting layer for cadmium telluride photovoltaicsBernard, Sneha 11 1900 (has links)
The peak efficiency range for CdTe solar cells is between 500-700nm; however efficiencies are limited at wavelengths shorter than 500nm due to the fact that at higher energies, most photons are absorbed in the CdS layer of the module and cannot contribute to the cell current. This means that incident photons with higher energies are ‘wasted’ as they are not efficiently absorbed by the cell. Luminescent downshifting (LDS) is a third-generation photovoltaic technology in which an external layer applied to the front surface of the cell absorbs high energy photons and re-emits them towards the cell at energies where they are more efficiently absorbed, thus avoiding front surface loss mechanisms.
This research project investigates the use of cerium and terbium co-doped silicon oxide thin films grown using electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR PECVD) as a luminescent down-shifting layer. Post-deposition annealing in a quartz tube furnace caused the formation of cerium disilicate (Ce2Si2O7) nanocrystallites, which were found to strongly absorb incident light at wavelengths below 360 nm and efficiently sensitize Tb3+ ions in the film for re-emission. The effect of annealing time and sample composition on physical and optical properties was studied.
Film compositions were determined through Rutherford backscattering spectrometry, revealing an incremental increase in rare earth concentration. Photoluminescence measurements showed a distinct Tb3+ peak around 550nm, which is close to the ideal efficiency wavelength for CdTe photovoltaics. Variable Angle Spectroscopic Ellipsometry measurements were used to determine the index of refraction of as-deposited and annealed films. UV-Visible absorption spectroscopy and transmission ellipsometry measurements showed a sharp increase in absorption around 400nm confirming wide separation between absorption and emission bands. When LDS films were coupled with thin film CdTe, subsequent absorption spectroscopy and transmission measurements showed stronger absorption at short wavelengths, as anticipated. / Thesis / Master of Applied Science (MASc)
|
136 |
Electrochemical Deposition of Metal Organic-Modified-Ceramic Nanoparticles to Improve Corrosion and Mechanical PropertiesNgo, Ngan Kim 08 1900 (has links)
Corrosion is an unstoppable process that occurs spontaneously in many areas of industry, specially, oil and gas industries. Therefore, the need of developing protective coating to lower the cost of corrosion is very consistent. Among different methods, electrodeposition has been a popular method since it offer many advantages such as low cost, ability to control the surface and thickness of the coating, ability to perform at low temperature and pressure, and very convenience. Ceramic nanoparticles have been widely incorporated into metal coating and used as a protective layer to improve both corrosion and hardness properties. Diazonium synthesis was used to modify cerium oxide nanoparticles by grafting with ferrocene for use in nickel nanocomposite coating. Citric acid and citrate salt were used as stabilizing ligands for yttrium oxide and praseodymium oxide nanoparticles in nickel plating solution to prevent the formation of hydroxide, thus, higher amount of nanoparticles was able to incorporate into nanocomposite coatings. These fabricated coatings were evaluate for the corrosion and mechanical properties using many different instruments and electrochemical techniques. As modified cerium oxide, stabilized yttrium oxide or praseodymium oxide added into nickel coatings. The results showed an increase in hardness and corrosion resistance leading to the overall improvement compare to pure nickel coating.
|
137 |
Luminescence properties of Zinc oxide doped with rare earth ionsXu, Amei January 2001 (has links)
No description available.
|
138 |
Far-infrared spectra of some orthoferrites /Smith, Bernard Thomas January 1973 (has links)
No description available.
|
139 |
The electrical conductivity of pure and doped Dy₂O₃ and Gd₂O₃ /Macki, James Michael January 1968 (has links)
No description available.
|
140 |
EPR of rare-earth impurities in single crystals of ZnSe and CdS.Yu, Jiang-Tsu January 1972 (has links)
No description available.
|
Page generated in 0.0317 seconds