Spelling suggestions: "subject:"deactivity."" "subject:"eactivity.""
411 |
Pyrolysis of biomass. Rapid pyrolysis at high temperature. Slow pyrolysis for active carbon preparation.Zanzi, Rolando January 2001 (has links)
Pyrolysis of biomass consists of heating solid biomass inthe absence of air to produce solid, liquid and gaseous fuels.In the first part of this thesis rapid pyrolysis of wood(birch) and some agricultural residues (olive waste, sugarcanebagasse and wheat straw in untreated and in pelletized form) athigh temperature (800ºC1000ºC) is studied ina free fall reactor at pilot scale. These conditions are ofinterest for gasification in fluidized beds. Of main interestare the gas and char yields and compositions as well as thereactivity of the produced char in gasification. A higher temperature and smaller particles increase theheating rate resulting in a decreased char yield. The crackingof the hydrocarbons with an increase of the hydrogen content inthe gaseous product is favoured by a higher temperature and byusing smaller particles. Wood gives more volatiles and lesschar than straw and olive waste. The higher ash content inagricultural residues favours the charring reactions. Charsfrom olive waste and straw are more reactive in gasificationthan chars from birch because of the higher ash content. Thecomposition of the biomass influences the product distribution.Birch and bagasse give more volatiles and less char thanquebracho, straw and olive waste. Longer residence time inrapid pyrolysis increase the time for contact between tar andchar which makes the char less reactive. The secondary charproduced from tar not only covers the primary char but alsoprobably encapsulates the ash and hinders the catalytic effectof the ash. High char reactivity is favoured by conditionswherethe volatiles are rapidly removed from the particle, i.e.high heating rate, high temperature and small particles. The second part of this thesis deals with slow pyrolysis inpresence of steam for preparation of active carbon. Theinfluence of the type of biomass, the type of reactor and thetreatment conditions, mainly temperature and activation time,on the properties and the yield of active carbons are studied.The precursors used in the experiments are birch (wood) anddifferent types of agricultural residues such as sugarcanebagasse, olive waste, miscanthus pellets and straw in untreatedand pelletized form. The results from the pyrolysis of biomass in presence ofsteam are compared with those obtained in inert atmosphere ofnitrogen. The steam contributes to the formation of solidresidues with high surface area and good adsorption capacity.The yield of liquid products increases significantly at theexpense of the gaseous and solid products. Large amount ofsteam result in liquid products consisting predominantly ofwater-soluble polar compounds. In comparison to the stationary fixed bed reactor, therotary reactor increases the production of energy-rich gases atthe expense of liquid products. The raw materials have strong effect on the yields and theproperties of the pyrolysis products. At equal time oftreatment an increase of the temperature results in a decreaseof the yield of solid residue and improvement of the adsorptioncapacity until the highest surface area is reached. Furtherincrease of the temperature decreases the yield of solidproduct without any improvement in the adsorption capacity. Therate of steam flow influences the product distribution. Theyield of liquid products increases while the gas yielddecreases when the steam flow is increased. <b>Keywords</b>: rapid pyrolysis, pyrolysis, wood, agriculturalresidues,biomass, char, tar, gas, char reactivity,gasification, steam, active carbon
|
412 |
Surface Stabilization and Electrochemical Properties from a Theoretical PerspectivePetrini, Daniel January 2007 (has links)
Diamond and cubic boron nitride surfaces have extreme properties that can be exploited in novel tribological, electrochemical and electronic applications. Normally insulating diamond surfaces can exhibit high surface conductivities due to hydrogen termination and the nature of the surrounding atmosphere. Successful growth of cubic boron nitride thin films is hindered when harsh synthesis methods are used. Three significant surface-related properties are addressed in this thesis using computational methods: (1) the structure, energy stability and reactivity of clean and differently terminated diamond surfaces, (2) the high surface conductivity of diamond, and (3) the adsorption-induced stability, reactivity and reconstruction of the cubic boron nitride (100) surface. Density Functional Theory (DFT) has been used at the GGA level under periodic boundary conditions to simulate the diamond and cubic boron nitride surfaces. The diamond surface structures are shown to be insensitive to hydrogen desorption. Oxygen atoms bind in different positions and with different bond strengths. Hydroxyl groups experience both attractive hydrogen bonding and steric repulsions within the adsorbed species. The reconstruction of diamond (111)-1x1 is strongly dependent on the species adsorbed onto the surface. Electron transfer was observed from a diamond surface into a water-based adlayer, yielding a p-type doped surface, depending on the nature of the surface and the adlayer. The cubic boron nitride (100)-1x1 surface was shown to reconstruct into a 2x1 configuration on both the boron- and nitrogen-rich side through the formation of B-B bonds, as well as N–N dimer-induced surface relaxation. Hydrogen stabilized the (100)-1x1 surface, but the partial removal of hydrogen yielded non-reactive dimer formation on the surface.
|
413 |
Autonomic reactivity in muscle pain : clinical and experimental assessmentKalezic, Nebojsa January 2006 (has links)
There are numerous indications of possible involvement of the autonomic nervous system in the genesis of chronic pain. The possibility exists that sympathetic activation is related to motor dysfunction and changes in sensory processing, which have otherwise been implicated in musculoskeletal disorders. The primary aim of the thesis has been to investigate autonomic regulation at rest and in response to laboratory tests of autonomic function in subjects suffering from chronic pain in different localisations (lower back, neck-shoulder and neck-jaw), as well as to study the relations between autonomic regulation, proprioceptive acuity and clinical data. Secondary aim has been to assess autonomic regulation in fit, pain-free subjects in response to experimentally induced pain and in occupationally relevant settings. A total of 194 subjects suffering from chronic pain participated [low back pain (LBP) n=93; non-traumatic neck pain (NT) n=40, Whiplash associated disorder (WAD) n=40, Whiplash with temporomandibular dysfunction (WADj) n=21]. Each chronic pain group was subjected to a battery of autonomic function tests combining cognitive (Stroop Colour-Word conflict tests), physical (handgrip), sensory (unpleasant sound) and motor tasks (chewing tests) as well as the activation of reflex pathways (paced breathing and the orthostatic test) and compared to an age- and gender balanced control group. Autonomic regulation was also assessed in exposure to experimentally induced muscle pain in healthy subjects (n=24) in order to describe acute pain reaction. Further assessment was carried out during monotonous repetitive work and dynamic work in healthy subjects (n=10) and in a three-day monitoring of ambulance personnel (n=26) in occupational settings. Autonomic regulation was evaluated using cardiovascular (heart rate and heart rate variability, local blood flow and blood pressure), respiratory (breathing rate) electrodermal (skin conductance), muscular (trapezius and masseter EMG) and biochemical (insulin, cortisol, catecholamines) variables. Proprioceptive acuity was assessed using active-active repositioning tests. Pain levels were assessed using Visual-analogue or Numerical Rating scales. General health was evaluated through the Short-Form SF-36 Health Related Quality of Life questionnaire and Self-Efficacy Score questionnaires, whereas dysfunction was evaluated using the Oswestry Low Back Pain questionnaire, Pain Disability and Neck Disability Index questionnaires, the McKenzie evaluation and primary healthcare diagnoses. Self-reports of pain, stress and exertion were acquired prior to, during and post-testing. Chronic pain subjects were characterised by increased sympathetic and decreased parasympathetic activity as reflected in heart rate (LBP, WAD, WADj), heart rate variability (LBP, WAD, WADj), blood pressure (WADj) and electrodermal activity (LBP). In general, WAD showed more pain and dysfunction than NT, with lower self-efficacy and health-related quality of life. Differential reactivity was observed only in WAD, with increased responsiveness to sensory stimuli (heart rate variability, electrodermal activity), and motor tasks (heart rate) and a decreased response to cognitive challenge (heart rate variability, electrodermal activity). A significant part of WADj subjects showed sensorimotor impairment and low endurance in chewing tests, concomitant with a cardiovascular response that correlated with pain levels. Proprioceptive acuity was not found to be impaired among subjects suffering from chronic pain, and there were no indications of significant individual response specificity. Response to experimentally induced muscle pain in healthy subjects was also characterised by a prominent cardiovascular component. In simulated occupational settings autonomic activation and transient insulin resistance were detected in healthy subjects following monotonous repetitive work, with no similar effects following dynamic exercise. Modest deviations in circadian heart rate variability patterns during workdays were detected in ambulance personnel reporting more pronounced musculoskeletal symptoms, with no such effects on work-free days. Autonomic balance observed in chronic pain subjects was characterised by a trend towards increased sympathetic activity in comparison with pain-free controls. Moderate signs of affected reactivity to autonomic function tests were observed in patients with WAD, however no specific reaction patterns have been observed in any chronic pain group. Correspondence between the intensity of pain and autonomic activity was observed in acute pain and in chronic pain groups characterised by higher pain levels. As indicated by autonomic and neurohormonal changes in the recovery from real and simulated work, further studies with physiological monitoring of the effects of work-related stress are warranted for better understanding of the mechanism of musculoskeletal disorders.
|
414 |
Surface and Interface Studies of ZnO using Reactive Dynamics SimulationRaymand, David January 2010 (has links)
About 90% of all chemicals are produced with the help of catalysts, substances with the ability to accelerate reactions without being consumed. Metal oxides play a prominent role in catalysis, since they are able to act reversibly in many chemical processes. Zink oxide (ZnO) is used to catalyse a number of industrially important reactions. For many of these reactions water is present as a reactant, product, or byproduct. The surface structure has a significant impact on the catalytic activity. However, currently, no experimental method simultaneously offers the spatial and temporal resolution to directly follow a catalytic process. This thesis explores surface structure dependent dynamical behavior for ZnO surfaces, nanoparticles, and water interfaces, using the computational chemistry method Molecular Dynamics, which enables detailed studies of structural and dynamical processes. Quantum mechanical (QM) calculations have been performed to obtain the energetics of the materials as a function of structure. This data has been used to parametrize reactive force-fields (ReaxFF), since the catalytic processes require both far larger and longer simulations than the capabilities of QM calculations on current computers. The simulations show that when steps are present on the surface, during crystal growth of ZnO, the creation of energetically favorable structures is accelerated. At the ZnO - water interface, structures that favor hydrogen bonding is promoted. At low, monolayer, coverage water adsorbs both molecularly and dissociatively, whereas at high coverage dissociated adsorption is favored. During evaporation from the monolayers, the ratio of dissociated and molecular water is preserved. Surface steps stabilizes the dissociated state as well as increases the rate of dissociation. The dynamical properties of ZnO nanoparticles were explored using Raman measurements and simulation. In both simulation and experiment certain vibrations were suppressed in the nanoparticles, compared to bulk. The simulations show that a narrow surface region lack the bulk-specific vibrations.
|
415 |
Emotion Regulation and Stress Reactivity in the Adolescent Daughters of Depressed MothersFoot, Meredith L 03 May 2011 (has links)
The daughters of women with a history of depression are at heightened risk for a range of mental health problems. The present study investigated emotion regulation, cortisol reactivity to stress, and interpersonal competence as potential indicators of risk in adolescent girls at high versus low risk for depression. Participants were a community sample of 47 girls and their mothers (27 high risk and 20 low risk). Mothers and daughters had been interviewed to assess diagnostic history as part of a previous longitudinal study. In the current study, daughters completed the Trier Social Stress Test for Children (TSST-C) and cortisol samples were collected before and after exposure to this psychosocial stressor. Both mothers and daughters completed self-report questionnaires and daughters were re-assessed using the Depressive Disorders module of the Kiddie Schedule for Affective Disorders and Schizophrenia. High risk mothers were also interviewed to assess the timing and chronicity of their depressive episodes during their daughters’ lifetime. High and low risk girls had equivalent ratings of self-reported stress following the TSST-C, but different physiological responses. Girls at high risk for depression showed a blunted cortisol response to the TSST-C whereas low risk girls showed a normal cortisol response. High risk status for depression predicted a blunted cortisol response to stress, which predicted difficulties with emotion regulation; difficulties with emotion regulation in turn predicted a greater number of self-reported depressive symptoms. These results suggest that maternal depression may act as a stressor that compromises stress-response system functioning in daughters and produces related difficulties with emotion regulation.
|
416 |
Protein-protein interactions in the bacteriophage T4-coded dCTPase-dUTPaseUngermann, Christian 04 May 1993 (has links)
Graduation date: 1993
|
417 |
Retinal Vascular Reactivity Capacity in Healthy SubjectsAdleman, Jenna 14 December 2010 (has links)
Purpose: To determine the vascular reactivity (VR) capacity and visual function (VF) response to potent vasoconstrictor and vasodilatory provocations of retinal arterioles in healthy subjects.
Methods: One hyperoxic hypocapnic and two graded hypoxic hypercapnic stimuli were administered. VR in response to gas provocation was assessed using the Canon Laser Blood Flowmeter. VF was assessed using high and low contrast ETDRS logMAR charts, Medmont C-100, and H.R.R. Pseudoisochromatic Plates.
Results: Flow reduced by 23% (p=0.0001) during hyperoxic hypocapnia and increased by 18% (p=0.0129) during hypoxic hypercapnia.
During hyperoxic hypocapnia, high contrast VA improved by -0.026 (p=0.0372). During hypoxic hypercapnia, high and low contrast VA were reduced (+0.033, p=0.0110; +0.025, p=0.0058, respectively). Colour vision was unaffected.
Conclusions: The retinal arterioles demonstrated a greater capacity for vasoconstriction than vasodilation in response to the stimuli used in our study.
Hyperoxic hypocapnia improved high contrast VA while hypoxic hypercapnia reduced high and low contrast VA.
|
418 |
Retinal Vascular Reactivity Capacity in Healthy SubjectsAdleman, Jenna 14 December 2010 (has links)
Purpose: To determine the vascular reactivity (VR) capacity and visual function (VF) response to potent vasoconstrictor and vasodilatory provocations of retinal arterioles in healthy subjects.
Methods: One hyperoxic hypocapnic and two graded hypoxic hypercapnic stimuli were administered. VR in response to gas provocation was assessed using the Canon Laser Blood Flowmeter. VF was assessed using high and low contrast ETDRS logMAR charts, Medmont C-100, and H.R.R. Pseudoisochromatic Plates.
Results: Flow reduced by 23% (p=0.0001) during hyperoxic hypocapnia and increased by 18% (p=0.0129) during hypoxic hypercapnia.
During hyperoxic hypocapnia, high contrast VA improved by -0.026 (p=0.0372). During hypoxic hypercapnia, high and low contrast VA were reduced (+0.033, p=0.0110; +0.025, p=0.0058, respectively). Colour vision was unaffected.
Conclusions: The retinal arterioles demonstrated a greater capacity for vasoconstriction than vasodilation in response to the stimuli used in our study.
Hyperoxic hypocapnia improved high contrast VA while hypoxic hypercapnia reduced high and low contrast VA.
|
419 |
Roles of Serine 101, Histidine 310 and Valine 464 in the Reaction Catalyzed by Choline Oxidase from Arthrobacter GlobiformisFinnegan, Steffan 05 March 2010 (has links)
The enzymatic oxidation of choline to glycine betaine is of interest because organisms accumulate glycine betaine intracellularly in response to stress conditions, as such it is of potential interest for the genetic engineering of crops that do not naturally possess efficient pathways for the synthesis of glycine betaine, and for the potential development of drugs that target the glycine betaine biosynthetic pathway in human pathogens. To date, one of the best characterized enzymes belonging to this pathway is the flavin-dependent choline oxidase from Arthrobacter globiformis. In this enzyme, choline oxidation proceeds through two reductive half-reactions and two oxidative half-reactions. In each of the reductive half-reactions the FAD cofactor is reduced to the anionic hydroquinone form (2 e- reduced) which is followed by an oxidative half-reaction where the reduced FAD cofactor is reoxidized by molecular oxygen with formation and release of hydrogen peroxide. In this dissertation the roles of selected residues, namely histidine at position 310, valine at position 464 and serine at position 101, that do not directly participate in catalysis in the reaction catalyzed by choline oxidase have been elucidated. The effects on the overall reaction kinetics of these residues in the protein matrix were investigated by a combination of steady state kinetics, rapid kinetics, pH, mutagenesis, substrate deuterium and solvent isotope effects, viscosity effects as well as X-ray crystallography. A comparison of the kinetic data obtained for the variant enzymes to previous data obtained for wild-type choline oxidase are consistent with the valine residue at position 464 being important for the oxidative half-reaction as well as the positioning of the catalytic groups in the active site of the enzyme. The kinetic data obtained for the serine at position 101 shows that serine 101 is important for both the reductive and oxidative half-reactions. Finally, the kinetic data for histidine at position 310 suggest that this residue is essential for both the reductive and oxidative half-reactions.
|
420 |
Emotion Regulation and Stress Reactivity in the Adolescent Daughters of Depressed MothersFoot, Meredith L 03 May 2011 (has links)
The daughters of women with a history of depression are at heightened risk for a range of mental health problems. The present study investigated emotion regulation, cortisol reactivity to stress, and interpersonal competence as potential indicators of risk in adolescent girls at high versus low risk for depression. Participants were a community sample of 47 girls and their mothers (27 high risk and 20 low risk). Mothers and daughters had been interviewed to assess diagnostic history as part of a previous longitudinal study. In the current study, daughters completed the Trier Social Stress Test for Children (TSST-C) and cortisol samples were collected before and after exposure to this psychosocial stressor. Both mothers and daughters completed self-report questionnaires and daughters were re-assessed using the Depressive Disorders module of the Kiddie Schedule for Affective Disorders and Schizophrenia. High risk mothers were also interviewed to assess the timing and chronicity of their depressive episodes during their daughters’ lifetime. High and low risk girls had equivalent ratings of self-reported stress following the TSST-C, but different physiological responses. Girls at high risk for depression showed a blunted cortisol response to the TSST-C whereas low risk girls showed a normal cortisol response. High risk status for depression predicted a blunted cortisol response to stress, which predicted difficulties with emotion regulation; difficulties with emotion regulation in turn predicted a greater number of self-reported depressive symptoms. These results suggest that maternal depression may act as a stressor that compromises stress-response system functioning in daughters and produces related difficulties with emotion regulation.
|
Page generated in 0.0522 seconds