• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • Tagged with
  • 30
  • 30
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physiologic acclimation of Southern Appalachian red spruce to simulated climatic warming

Hagen, Jonathan William. January 2006 (has links) (PDF)
Thesis (M.S.) -- University of Tennessee, Knoxville, 2006. / Title from title page screen (viewed on June 12, 2006). Thesis advisor: Jennifer A. Franklin. Vita. Includes bibliographical references.
2

Factors influencing net primary production in red spruce /

Day, Michael E., January 2000 (has links)
Thesis (Ph. D.) in Forest Resources--University of Maine, 2000. / Includes vita. Includes bibliographical references (leaves 149-167).
3

Age-related trends in red spruce needle anatomy and their relationship to declining productivity /

Ward, Margaret H. January 2004 (has links) (PDF)
Thesis (M.S.) in Forestry--University of Maine, 2004. / Includes vita. Includes bibliographical references (leaves 83-88).
4

Plasticity in response to changing light environment for red spruce and balsam fir /

Zazzaro, Sarah. January 2009 (has links)
Thesis (M.S.) in Ecology and Environmental Science--University of Maine, 2009. / Includes vita. Includes bibliographical references (leaves 69-73).
5

Analysis of red spruce (Picea rubens) regeneration in Pocahontas, Randolph, and Tucker counties, West Virginia

Rollins, Adam W. January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains vi, 83 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 79-83).
6

A physiological examination of the age-related decline in photosynthesis in Picea rubens /

Adams, Stephanie L. January 2006 (has links) (PDF)
Thesis (M.S.) in Forestry--University of Maine, 2006. / Includes vita. Includes bibliographical references (leaves 67-72).
7

Factors Influencing Net Primary Production in Red Spruce

Day, Michael January 2000 (has links) (PDF)
No description available.
8

A Physiological Examination of the Age-related Decline in Photosynthesis in Picea rubens

Adams, Stephanie L. January 2006 (has links) (PDF)
No description available.
9

Age-Related Trends in Red Spruce Needle Anatomy and Their Relationship to Declining Productivity

Ward, Margaret H. January 2004 (has links) (PDF)
No description available.
10

Red spruce physiology and growth in response to elevated CO₂, water stress and nutrient limitations

Samuelson, Lisa J. 07 June 2006 (has links)
Spruce-fir ecosystems of the eastern United States interest scientists because of reported changes in population growth. Whether red spruce (Picea rubens Sarg.) populations are declining because of disease, pollution or environmental stress or experiencing natural changes in stand development is unclear. This research examined the growth and physiological responses of red spruce seedlings to changes in atmospheric CO₂ water and nutrient availability to determine the response of this species to potential climatic changes. Red spruce seedlings were grown from seed for 1 year in ambient (374 ppm) or elevated (713 ppm) CO₂ in combination with low or high soil fertility treatment, and well-watered or water-stressed conditions. Red spruce seedlings grown with limited nutrient and water availability increased growth in elevated CO₂ as did seedlings grown with high soil fertility treatment and ample water. At 12 months of age, elevated CO₂-grown seedlings had greater dry weight, height, diameter and specific leaf weight than ambient CO₂-grown seedlings. Seedlings that formed a bud in elevated CO₂ at 5 months of age produced more total fixed growth than seedlings grown in ambient CO₂. Mean relative growth rate was greater in elevated than ambient CO₂-grown seedlings only from 3 to 5 months of age. Growth was greater at 12 months despite a lower photosynthetic rate in elevated CO₂-grown seedlings compared to ambient CO,-grown seedlings. Transplanting seedlings from 175-cm³ pots into 646-cm³ pots at 7 months did not change growth and physiological responses to elevated CO₂ at 12 months. Dry weight allocation patterns to leaf, stem and root were not influenced by growth in elevated CO₂ for 1 year. Drought-conditioning had a greater influence on the physiological responses of red spruce to decreasing water potential than did growth in elevated CO₂. Results from this research suggest that red spruce seedlings will grow bigger faster in a future elevated CO₂ atmosphere even if water and nutrients are limiting. / Ph. D.

Page generated in 0.0572 seconds