Spelling suggestions: "subject:"redes neurais artificial"" "subject:"aedes neurais artificial""
621 |
Uso de sistemas tutores inteligentes na compreensão de leitura / Intelligent tutoring systems in reading comprehensionBORGES, Fabrícia Neres 28 November 2009 (has links)
Made available in DSpace on 2014-07-29T15:08:22Z (GMT). No. of bitstreams: 1
fabricia p 1.pdf: 6603333 bytes, checksum: 71692ee42eb5f5439767ffb1f02551bd (MD5)
Previous issue date: 2009-11-28 / Brazilian students have achieved poor results in the National Student Performance Exam (ENADE) in 2006. ENADE has shown reading is badly cultivated among undergraduates. The low interest on reading is justified by the fact that most of students have jobs and are enrolled in evening courses, without enough time to studies. The current research proposes the use of intelligent tutoring systems to improve student reading comprehension. The main goal is to develop the technique of underlining among undergraduates to assist
in the analysis of academic texts. Two groups of students, A and B, participated in data collection. The difference between the groups is the amount of exercises performed in each group. Students of Group A have received 20 exercises with four levels of difficulty. In Group B, an Artificial Neural Network, Multilayer Perceptron (MLP), decides the amount of exercises that the student must perform at each level of difficulty by controlling what is the next exercise after each exercise is finished. The approach used in Group B adapts
to the characteristics of knowledge retention of each student. Therefore, the tutoring system adapts the degree of exercise difficulty to the student. Statistical data analysis has indicated significant differences between groups A and B. / Os estudantes universitários brasileiros apresentaram baixos índices de leitura no Exame Nacional de Desempenho (ENADE) em 2006. O ENADE mostrou que o hábito de ler é pouco cultivado entre os universitários. O pouco interesse pela leitura é justificado pelo fato de que maioria dos estudantes
são trabalhadores matriculados em cursos noturnos, com pouco tempo para se dedicar aos estudos. Esta pesquisa propõe o uso de sistemas tutores inteligentes para auxiliar universitários na compreensão de leitura. O objetivo
do sistema tutor proposto é desenvolver a técnica de sublinhamento dos universitários para auxiliar na análise de textos acadêmicos. Dois grupos de estudantes, A e B, participaram da coleta de dados. A diferença entre os grupos
reside na quantidade de exercícios realizados em cada grupo. O grupo A realizou 20 exercícios com quatro níveis de dificuldade. No grupo B a Rede Neural Artificial Multilayer Perceptron (MLP) decide a quantidade de exercícios que
o estudante deve realizar em cada nível de dificuldade. A abordagem utilizada no grupo B adapta-se às características de retenção de conhecimento de cada estudante. Com isso, o sistema tutor se adapta ao grau de dificuldade ou facilidade
do estudante. Por meio de estudo comparativo, a análise estatística dos dados indicou diferenças significativas entre os grupos A e B.
|
622 |
Estudo do comportamento resiliente dos solos tropicais grossos do interior do Estado de São Paulo / Study of resilient behavior of tropical sandy soils from interior of Sao Paulo stateHelio Marcos Fernandes Viana 07 December 2007 (has links)
O módulo de resiliência é uma propriedade mecânica dos solos indispensável para análise estrutural de pavimentos em termos de tensão e deformação. O principal ensaio laboratorial para estimativa do módulo de resiliência dos solos é o ensaio triaxial cíclico no qual existe um maior controle das condições da amostra, dos carregamentos aplicados e dos deslocamentos medidos. A utilização de relações para obtenção do módulo de resiliência a partir de propriedades do solo obtidas de ensaios mais simples e rotineiros é permitida pelo procedimento NCHRP 1-37A (2004) e pode ser muito útil para fase de anteprojeto de implantação de rodovias, pois permite uma avaliação rápida do módulo de resiliência dos solos de jazidas e subleitos, localizados ao longo das diversas alternativas de traçados a serem analisadas. No entanto, as relações existentes ou são restritivas, por não considerarem os solos das regiões tropicais de comportamento laterítico e não laterítico da classificação MCT (Miniatura Compactado Tropical), ou são de baixa eficiência. Considerando-se o sucesso que as redes neurais artificiais (RNAs) têm apresentado no campo da engenharia em estabelecer relações entre variáveis explicativas e variáveis resposta, neste trabalho foram desenvolvidas RNAs para relacionar o módulo de resiliência com as propriedades do solo, tanto para solos grossos compactados na energia modificada como para solos compactados na energia normal. O banco de dados utilizado no trabalho baseou-se nos resultados de ensaios de setenta e seis amostras de solos coletadas no interior do Estado de São Paulo. Finalmente, verificou-se que as RNAs podem prever, com alta eficiência, o módulo de resiliência dos solos tropicais de comportamento laterítico e não laterítico a partir de propriedades do solo tais como: composição granulométrica, LL, IP, umidade ótima e resultados do ensaio de compressão simples. / The resilient modulus is an essential mechanical property for stress-strain analysis of pavements. The main test to evaluate resilient modulus of soils is cyclic triaxial test which there is a better control not only of samples but also of loads and displacements. Nowadays, the utilization of relationships to obtain resilient modulus from soils properties, from routine simple tests, is allowed by procedure NCHRP 1-37A, and that can be useful in initial design in construction of roads, as the resilient modulus of material pits and subgrades, places along several alternative traces of design, can be evaluated very fast by relationships. However, the existing relationships are restrictive, because they do not consider tropical soils of lateritic and non-lateritic behavior from MCT (Miniatura Compactado Tropical) classification and they have low performance. Artificial neural networks (ANNs) have shown high success to establish relationships from answering variables and explicative variables, so in this work was developed ANNs to establish relationships from resilient modulus and soil properties, not only for sandy soils in Proctor\'s modified compaction energy but also for soils in Proctor\'s standard compaction energy. The data base used in this work was laboratory test results from seventy-six soils which were collected in interior of Sao Paulo state. Finally, for tropical soils of lateritic and non-lateritic behavior, it was verified that ANNs can forecast, with high performance, resilient modulus from soil properties just as: grain size composition, liquid limit (LL), plasticity index (PI), optimum moisture content and results of simple strength compressive test.
|
623 |
Uma proposta de estimador neural da velocidade para controle vetorial do motor de indução / A neural speed estimator proposal for vector control of induction motorTiago Henrique dos Santos 13 August 2018 (has links)
A velocidade dos motores de indução é uma grandeza importante em um processo industrial. Entretanto, a medição direta da velocidade em motores de indução pode comprometer o sistema de acionamento e controle, aumentando o custo de implementação. Assim, as técnicas sensorless destinadas a estimar ou prever a velocidade em motores de indução são amplamente investigadas para uso em várias unidades industriais. Essa estratégia, quando baseada nos modelos matemáticos dos motores de indução é, normalmente, dependente dos parâmetros da máquina ou requer outro método que faça uma estimativa ou previsão. Assim, a abordagem alternativa deste trabalho consiste no uso de duas estratégias de implementação de redes neurais artificiais como estimador de velocidade aplicado a duas estratégias de controle do motor de indução orientado pelo campo do estator, controle direto de corrente e controle direto de torque. A velocidade síncrona, as correntes do estator e o torque eletromagnético, que são variáveis utilizadas nos algoritmos de acionamentos orientados no campo eletromagnético, são as entradas dos estimadores neurais propostos. Neste trabalho, resultados de simulação são aplicados no processo de seleção das redes neurais e os resultados experimentais mostram o desempenho de duas estratégias de implementação do estimador neural de velocidade embarcadas em DSP em diferentes metodologias de controle com dois motores de indução de potências diferentes. / The induction motor speed is an important quantity in an industrial process. However, the direct measurement of speed on induction motors can compromise the drive and control system, increasing the implementation cost. Thus, sensorless techniques aimed at estimating or predicting the speed in induction motors are widely investigated to be used in industrial plant units. This strategy, when based on the mathematical models of the induction motors is, usually, dependent on the machine parameters or requires another method that makes an estimation or prediction. Thus, the alternative approach of this work consists in the use of two implementation strategies of artificial neural networks as speed estimator applied to two stator field-oriented induction motor control strategies, direct current control and direct torque control. The synchronous speed, the stator currents and the electromagnetic torque, which are quantities used in field-oriented drives, are the inputs of the proposed neural estimators. In this work, simulation results are applied to neural networks selection process and the experimental results show the performance of two implementation strategies of the neural speed estimator embedded in DSP in different control methodologies with two induction motors with different powers.
|
624 |
Desenvolvimento de modelos neurais para o processamento de sinais acústicos visando a medição de propriedades topológicas em escoamentos multifásicos / Development of neural models for the processing of acoustic signals aiming at the measurement of topological properties in multi-phase flowÉrica Regina Filletti Nascimento 15 February 2007 (has links)
Uma nova metodologia para a medida não intrusiva da fração volumétrica e da área interfacial é proposta neste trabalho, com base em redes neurais para processar respostas obtidas de sinais acústicos. A distribuição geométrica das fases dentro do escoamento é mapeada pela velocidade local de propagação acústica, considerada na equação diferencial que governa o problema. Esta equação é resolvida numericamente pelo método de diferenças finitas com as condições de contorno reproduzindo a estratégia de pulso/eco. Um número significativo de distribuições das velocidades de propagação foi considerado na solução da equação diferencial para construir uma base de dados, da qual os parâmetros da rede podem ser ajustados. Especificamente, o modelo neural é construído para mapear características extraídas dos sinais obtidos de quatro sensores acústicos, localizados no contorno externo do domínio de sensoriamento, estimando a fração volumétrica e a área interfacial correspondentes. Estas características correspondem às amplitudes e aos tempos de chegada dos três maiores picos da onda acústica. Os resultados numéricos mostram que o modelo neural pode ser treinado em um tempo computacional razoável e é capaz de estimar os valores da fração volumétrica e da área interfacial dos exemplos do conjunto de teste. / A new methodology for measuring the volumetric fraction and interfacial area in two-phase flows is proposed in this work, based on neural network for processing the responses obtained from an acoustic interrogation signal. The geometrical distribution of the phases within the flow is mapped by the local acoustic propagation velocity which is considered in the governing differential equation. This equation is solved numerically by the finite difference method with boundary conditions reproducing the pulse/echo strategy. A significant number of propagation velocities distributions were considered in the solution of the differential equation in order to construct a database from which the neural model parameters could be adjusted. Specifically, the neural model is constructed to map the features extracted from the signals delivered by four acoustic sensors, placed on the external boundary of the sensing domain, into the corresponding volumetric fraction and interfacial area. These features correspond to the amplitudes and the times of arrival on the three first peaks of the acoustic wave. Numerical results showed that the neural model can be trained in a reasonable computational time and it is capable of estimating the values of the volumetric fraction and the interfacial area of examples of the set of test.
|
625 |
Algoritmos de adaptação do padrão de marcha utilizando redes neurais / Gait-pattern adaptation algorithms using neural networkMarciel Alberto Gomes 09 October 2009 (has links)
Este trabalho apresenta o desenvolvimento de algoritmos de adaptação do padrão de marcha com a utilização de redes neurais artificiais para uma órtese ativa para membros inferiores. Trajetórias estáveis são geradas durante o processo de otimização, considerando um gerador de trajetórias baseado no critério do ZMP (Zero Moment Point) e no modelo dinâmico do equipamento. Três redes neurais são usadas para diminuir o tempo de cálculo do modelo e da otimização do ZMP, e reproduzir o gerador de trajetórias analítico. A primeira rede aproxima a dinâmica do modelo fornecendo a variação de torque necessária para a realização do processo de otimização dos parâmetros de adaptação da marcha; a segunda rede trabalha no processo de otimização, fornecendo o parâmetro otimizado de acordo com a interação paciente-órtese; a terceira rede reproduz o gerador de trajetórias para um determinado intervalo de tempo do passo que pode ser repetido para qualquer quantidade de passos. Além disso, um controle do tipo torque calculado acrescido de um controle PD é usado para garantir que as trajetórias atuais estejam seguindo as trajetórias desejadas da órtese. O modelo dinâmico da órtese na sua configuração atual, com forças de interação incluídas, é usado para gerar resultados simulados. / This work deals with neural network-based gait-pattern adaptation algorithms for an active lower limbs orthosis. Stable trajectories are generated during the optimization process, considering a trajectory generator based on the Zero Moment Point criterion and on the dynamic model. Additionally, three neural network are used to decrease the time-consuming computation of the model and ZMP optimization and to reproduce the analitical trajectory generator. The first neural network approximates the dynamic model providing the necessary torque variation to gait adaptation parameters process; the second network works in the optimization procedure, giving the adapting parameter according to orthosis-patient interaction; and the third network replaces the trajectory generation for a stablished step time interval which can be reproduced any time during the walking. Also, a computed torque controller plus the PD controller is designed to guarantee the actual trajectories are following the orthosis desired trajectories. The dynamic model of the actual active orthosis, with interaction forces included, is used to generate simulation results.
|
626 |
Análise hidrológica utilizando redes neurais para previsão de séries de vazões / Hydrologic analysis using Artificial Neural Networks for time series forecasting streamflowSergio Luis Yoneda 20 March 2014 (has links)
O estudo de inventário tem por objetivo estimar o potencial hidroelétrico de rios ou bacias, analisando várias alternativas propostas de partição de quedas, sendo que cada alternativa contém um conjunto de aproveitamentos hidroelétricos. Essas alternativas são então estudadas individualmente para definição da alternativa ótima, ou seja, a que tem melhor custo beneficio e ao mesmo tempo cause menos danos ambientais. Para essa análise necessitamos calcular a potência de cada aproveitamento específico, assim como a energia gerada, para isso então precisamos conhecer a vazão do rio em estudo, no local desses aproveitamentos. Como a vazão dos rios varia com o tempo, pois depende de variáveis como clima, geologia dos solos, desmatamento, entre outras, se recomenda usar nos cálculos séries longas de vazões médias com no mínimo 30 anos de dados, o problema é que em muitos casos não temos essas séries ou temos séries menores e incompletas, nesse caso então necessitamos estimar os valores ausentes e ruidosos utilizando os dados de estações fluviométricas próximas, para depois transportá-las para o aproveitamento em estudo, para isso utilizamos de técnicas estatísticas de correlação. A ideia nesse trabalho é de utilizarmos redes neurais artificiais ao invés das técnicas convencionais e comparar os resultados obtidos. / The inventory study aims to estimate the hydropower potential of rivers or basins, analyzing several alternative proposals for partition of falls, each of which contains a set of alternative hydroelectric developments. These alternatives are then individually analyzed to define the optimal alternative, namely that which has the best cost benefit while causing less environmental damage. For this analysis we need to calculate the power of each specific use, as well as the energy generated for that then we need to know the flow of the river under study, the location of these usages. As the river flow varies with time because it depends on variables such as climate, geology, soils, deforestation, among others, we recommend using the long series of calculations mean flow at least 30 years of data, the problem is that in many cases we do not have these series or have smaller and incomplete series, in this case then we need to estimate the missing values and noisy data using next gauged stations, and then transport them to use in the study, for this we use statistical correlation techniques. The idea is that we use work instead of the conventional Artificial Neural Network techniques and compare the results.
|
627 |
Avaliação da Predição de Algoritmos de Treinamento Supervisionado de Redes Neurais Artificiais Aplicado a Qualidade de Biodiesel / Prediction Evaluation Training Algorithms Supervised Artificial Neural Networks Applied to quality BiodieselSousa, Raquel Machado de 26 February 2015 (has links)
Made available in DSpace on 2016-08-17T14:52:38Z (GMT). No. of bitstreams: 1
DISSERTACAO_RAQUEL MACHADO DE SOUSA.pdf: 3658389 bytes, checksum: 42d5adba41b1c3d2c90530fe77f43b2c (MD5)
Previous issue date: 2015-02-26 / To ensure efficient combustion and emissions quality, as well as safety in the transport and handling of biodiesel, the National Agency of Petroleum, Natural Gas and Biofuels (ANP) establishing, through Resolution No. 14 of 2012, quality standards and specifications for this biofuel, and for that many official or alternative methods may be used. In literature, it is possible to identify an increasing use of linear methods and non - linear in the recognition and classification standards applied to the monitoring of biodiesel quality. In this context, the Artificial Neural Networks (ANN) have shown to be quite viable, as a tool non - linear, in predicting biofuel properties. The present work proposes to assess the prediction of biodiesel quality properties using supervised training algorithms of ANNs. In order to contribute to a study to provide a network structure with a training algorithm that can perform better with good results in the prediction. Through the prediction of the properties of the biodiesel from the composition of the esters of the raw material, it is possible to assess the feasibility of using such raw materials for the synthesis of a quality biodiesel. In this work we obtained a better ANN architecture for iodine value prediction and viscosity. The results of the simulations showed that the ANNs are a technology that can be used to predict these properties, like other related composition of fatty acid esters. / Para assegurar uma combustão eficiente e qualidade nas emissões, bem como a segurança no transporte e manuseio do biodiesel, a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) institui, por meio da Resolução nº 14 de 2012, parâmetros de qualidade e especificações para esse biocombustível, e para isso diversos métodos oficiais ou alternativos podem ser utilizados. Na literatura, é possível identificar uma crescente utilização de métodos lineares e não- lineares no reconhecimento e classificação de padrões aplicados ao monitoramento da qualidade de biodiesel. Nesse contexto, as Redes Neurais Artificiais (RNAs) vêm se mostrando bastante viáveis, como ferramenta não lineares, na predição de propriedades de biocombustíveis. O presente trabalho propõe avaliar a predição de propriedades de qualidade de biodiesel utilizando algoritmos de treinamento supervisionado de RNAs. De modo a contribuir com um estudo para se obter uma estrutura de rede com um algoritmo de treinamento que consiga bons resultados com melhor desempenho na predição. Por meio da predição das propriedades do biodiesel a partir da composição dos ésteres da matéria-prima, será possível avaliar a viabilidade da utilização de tal matéria-prima para a síntese de um biodiesel de qualidade. No presente trabalho obteve-se uma melhor arquitetura de RNA para predição de índice de iodo e viscosidade. Os resultados obtidos das simulações mostraram que as RNAs são uma tecnologia que pode ser utlizada para predizer essas propriedades, como outras relacionadas a composição de ésteres de ácidos graxos.
|
628 |
AVALIAÇÃO DE MATÉRIAS-PRIMAS PARA QUALIDADE DE BIODIESEIS PELA PREDIÇÃO DE PROPRIEDADES FÍSICO-QUÍMICAS / RAW MATERIALS FOR EVALUATION BIODIESELS QUALITY FOR PREDICTION OF PHYSICAL AND CHEMICAL PROPERTIESBarradas Filho, Alex Oliveira 30 January 2015 (has links)
Made available in DSpace on 2016-08-17T16:54:31Z (GMT). No. of bitstreams: 1
TESE_Alex Oliveira Barradas Filho.pdf: 3027425 bytes, checksum: 63f427132994ab4f584101b97cb4cc80 (MD5)
Previous issue date: 2015-01-30 / Alternative fuels have the potential to replace gradually the petroleum derivatives, and the biodiesel, that is a biofuel obtained from transesterification of triglycerides, is pointed as a substitute for mineral diesel. The present work focus on the optimization and application of artificial neural networks (ANNs) on the prediction of viscosity, iodine value, induction period, cetane number, specific gravity and cold filter plugging point of biodiesel, which are properties inherent to the composition. The input variables were the percentage of 13 fatty acid methyl esters (FAMEs) more common in biodiesels and, once the transesterification does not modify the fatty esters profile of the raw materials, the ANN method allowed the prediction of the six properties, even before the transesterification, after synthesis of the biodiesel or during the storage. Therefore, this method can be useful as a tool to evaluate the potential of raw materials to produce a biodiesel with good quality and to reach improvements on official methods. The optimization process of ANN occurred in three steps: test of algorithms for adjusting weights, test of stopping condition and test of activation functions, and the physicochemical properties were treated independently. For the set of test samples, which simulates real samples, the application of the optimized ANNs provided results with root mean squared errors (RMSE) of 0.55 mm²/s, 3.49 g/100g, 0.89 h, 2.06, 2.89 kg/m³ and 2.61 °C for viscosity, iodine value, induction period, cetane number, specific gravity and cold filter plugging point, respectively, what ensures the feasibility of the proposed method. A comparison between the proposed method and linear methods from literature, both based on the biodiesel composition indicate that our ANN model is much more adequate to the problem addressed. / Na busca por combustíveis alternativos que possam substituir gradualmente os derivados de petróleo, o biodiesel é apontado como um substituto para o diesel mineral e é definido como um biocombustível obtido a partir da transesterificação de triglicerídeos. O presente trabalho tem como objetivo a otimização e aplicação de redes neurais artificias (ANNs) na predição de viscosidade, índice de iodo, período de indução, número de cetano, massa específica e ponto de entupimento de filtro a frio (PEFF) de biodiesel, propriedades inerentes à composição. As variáveis de entrada foram os percentuais de 13 ésteres metílicos de ácidos graxos (FAMEs) mais comuns em biodieseis e, como a transesterificação não altera o perfil de ésteres de ácidos graxos da matéria-prima, o método ANN permitiu a predição das seis propriedades, seja antes da transesterificação, após a síntese de biodiesel ou durante o armazenamento. Portanto, este método pode ser útil como uma ferramenta para avaliar o potencial de matérias-primas para produzir um biodiesel com boa qualidade e para alcançar melhorias relativas aos métodos oficiais. O processo de otimização da ANN ocorreu em três etapas: teste dos algoritmos para ajuste de pesos, teste das condições de parada e teste das funções de ativação, e as propriedades físico-químicas foram tratadas de forma independentes. Para o conjunto de amostras de teste, que simula as amostras reais, a aplicação das ANN otimizadas forneceu resultados com a raiz do erro médio quadrático (RMSE) de 0,55 mm²/s, 3,49 g/100g, 0,89 h, 2,06, 2,89 kg/m³ e 2,61 °C para viscosidade, índice de iodo, período de indução, número de cetano, massa específica e PEFF, respectivamente, o que assegura a viabilidade do método proposto. Uma comparação entre o método proposto e métodos lineares, ambos com base na composição de biodiesel, indica que o modelo de ANN é mais adequado para o problema abordado.
|
629 |
Estudos sobre um modelo de representação distribuída de palavras no contexto de análise de estados emocionaisSilva, Isabela Ruiz Roque da 07 August 2018 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-09-17T20:49:58Z
No. of bitstreams: 2
ISABELA RUIZ ROQUE DA SILVA.pdf: 2148028 bytes, checksum: 749a03beaf2994824bdd3130eef3a554 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-09-21T12:06:22Z (GMT) No. of bitstreams: 2
ISABELA RUIZ ROQUE DA SILVA.pdf: 2148028 bytes, checksum: 749a03beaf2994824bdd3130eef3a554 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-21T12:06:22Z (GMT). No. of bitstreams: 2
ISABELA RUIZ ROQUE DA SILVA.pdf: 2148028 bytes, checksum: 749a03beaf2994824bdd3130eef3a554 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-08-07 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Emotions are important in interpersonal relationships and are part of the human being. Many people can express their feelings or emotions through social media, like Twitter and Facebook. Many computational techniques have been proposed for the study of emotions, and most use a bag-of-words representation for documents. Recently, new approaches, such as Word2Vec, ca-pable of generating distributed representations of words, called word vectors, have arisen and are being used for the syntactic and semantic study of documents. To contribute to the research in emotional states analysis from social media data and a better understanding of the use of distributed word representation models, this dissertation proposes to investigate three hypothe-ses: the Word2Vec parameters influence the distributed representations of words and, conse-quently, the performance of the emotional state classifiers that use these representations; the distributed representations of words can improve the performance of conventional classifiers applied to the study of emotional states; and clustering word vectors generate groups that carry the semantic context of emotional states. The experiments performed showed little influence of the algorithm parameters on its performance for this specific problem. We also observed that the word vectors could not be applied directly in the training of classifiers and the resulting vector greatly deteriorated the performance of the classifiers when compared to the traditional bag of words model. Finally, we found that the grouping of word vectors, while generating groups with clear semantic meaning, does not generate groups that reflect emotional states. / Emoções são importantes nas relações interpessoais e fazem parte do ser humano. Muitas pessoas podem expressar seus sentimentos ou emoções nas mídias sociais, como no Twitter e no Facebook. Muitas técnicas computacionais foram propostas para o estudo das emoções e a maior parte delas utiliza uma representação baseada em conjuntos de palavras (bag of words) para os documentos. Recentemente, novas abordagens, como o Word2Vec, capazes de gerar representações distribuídas de palavras, chamadas de vetores de palavras ou word vectors, surgiram e vêm sendo empregadas para o estudo sintático e semântico de documentos. Para contribuir com a pesquisa nas áreas de análise de estados emocionais a partir de dados de mídias sociais e numa melhor compreensão sobre o uso de modelos de representação distribuída de palavras, essa dissertação propõe investigar três hipóteses de pesquisa: os parâmetros do Word2Vec influenciam as representações distribuídas das palavras e, consequentemente, o desempenho dos classificadores de estados emocionais que usam essas representações; as representações distribuídas de palavras podem melhorar o desempenho de classificadores convencionais aplicados ao estudo de estados emocionais; e o agrupamento dos vetores de palavras geram grupos que carregam o contexto semântico dos estados emocionais. Os experimentos realizados mostraram pouca influência dos parâmetros do algoritmo no seu desempenho para esse problema específico. Também observamos que os vetores de palavras não podem ser aplicados diretamente no treinamento dos classificadores e o vetor resultante deteriorou muito o desempenho dos classificadores quando comparado ao modelo tradicional do tipo bag of words. Por fim, verificamos que o agrupamento dos vetores de palavras, embora gere grupos com significado semântico claro, não gera os grupos que refletem os estados emocionais.
|
630 |
Modelo de análise de variáveis craniométricas através das redes neurais artificiais paraconsistentes / Analysis of craniometric variables throughout paraconsistent logic neural networkMauricio Conceição Mario 22 September 2006 (has links)
Este trabalho desenvolve um modelo para análise de variáveis craniométricas que utiliza as Redes Neurais Artificiais Paraconsistentes, assentadas na Lógica Paraconsistente Anotada de dois valores. Tal lógica possui a capacidade de mensurar incerteza, inconsistência e paracompleteza. A Lógica Paraconsitente vem sendo empregada em diversas aplicações sujeitas a estas situações, constituindo nova ferramenta matemática em Inteligência Artificial. O trabalho tem como principal objetivo melhorar o diagnóstico cefalométrico. O modelo desenvolvido recebe as medidas das variáveis craniométricas de um determinado paciente e as compara com as médias das variáveis craniométricas normais de uma amostra da população brasileira. Esta amostra é composta de crianças e adolescentes de ambos os sexos, na faixa etária de 6 a 18 anos, utilizadas neste trabalho como valores de referência de normalidade. A análise cefalométrica aqui proposta consiste em quantificar discrepâncias esqueletais e dentárias sob a Lógica Paraconsistente. O uso das Redes Neurais Artificiais Paraconsistentes permite agregar ao méto do um fator de incerteza, respeitando o diagnóstico ortodôntico tradicional, e ao mesmo tempo, contextualiza diferentes regiões craniofaciais. O resultado da análise consiste dos graus de discrepância esqueletal, anteroposterior e vertical, e graus de discrepância dentárias, relativas aos incisivos inferiores e superiores. Variáveis craniométricas de 120 pacientes foram processadas pelo modelo proposto e avaliadas por três especialistas em Ortodontia. De acordo com o índice Kappa, houve desde concordância satisfatória até concordância quase perfeita entre o modelo e os especialistas, de acordo com as variáveis consideradas. As opiniões inter-especialista são substancialmente similares às comparações entre os especialistas e o modelo apresentado, o que reflete o potencial do modelo como um sistema especialista. A utilização de técnicas de Inteligência Artificial através da Lógica Paraconsistente, permitiu significante melhora na análise cefalométrica proposta. O modelo apresentado pode ser adaptado a outras amostras ou populações, com a adaptação dos valores de referência iniciais de normalidade. / This work shows the development of an unequal craniometric analysis model, which uses Paraconsistent Neural Network, based upon Paraconsistent Logic with two values. Such logical approach has the capability to handle concepts as uncertainness, inconsistency and paracompleteness. It has been used on diverse applications which present such features, constituting a new mathematical tool in Artificial Intelligence. The presented methodology had as main goal to booster diagnosis in Orthodontics. The developed model processes craniometric measures of a specific person, and compares to the expected means drawn from a Brazilian sample, comprised of children and adolescent individuals, ranging from 6 to 18 year-old, of both genders. The current cephalometric analysis, developed under the approach of Paraconsistent Logic, quantifies skeletal and dental discrepancies. The use of Paraconsistent Neural Network allows aggregating a factor of vagueness, respecting the limits of traditional orthodontic classification. At the same time, it contextualizes variables of different craniofacial regions. The results of the analysis are expressed through degrees of skeletal discrepancies, in the anteroposterior and vertical dimensions, and degrees of dental discrepancies, for the upper and lower incisors. Cephalometric va lues of a sample of 120 patients were processed by the paraconsistent model and analyzed by three specialists in Orthodontics. According to Kappa index, the agreement between the model and the specialists ranged from moderate to almost perfect, according to the variables considered. The inter-observer opinions were substantially similar to the mathematical model, which reflects the potential of the model as a specialist system. The use of Artificial Intelligence methods throughout Paraconsistent Logics, allowed significant improvement in cephalometric assessment. The presented model can be applied in different samples or populations, with adaptation of the degrees of normality as initial references.
|
Page generated in 0.4164 seconds