• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CONVERGÊNCIA DO ESTIMADOR RLS PARA ALGORITMOS DE PROGRAMAÇÃO DINÂMICA HEURÍSTICA / CONVERGENCE OF ESTIMATOR RLS FOR ALGORITHMS OF HEURISTIC DYNAMIC PROGRAMMING

Maciel, Allan James Ferreira 28 September 2012 (has links)
Made available in DSpace on 2016-08-17T14:53:22Z (GMT). No. of bitstreams: 1 Dissertacao Allan James.pdf: 3170694 bytes, checksum: 054a9e74e81a7c2099800246d0b6c530 (MD5) Previous issue date: 2012-09-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The union of methodologies for optimal control and dynamics programming has stimulated the development of algorithms for realization of discrete control systems of the type linear quadratic regulator (DLQR). The methodology is based on reinforcement learning methods based on temporal differences and approximate dynamic programming. The proposed method combines the approach of the value function by method RLS (recursive least squares) and approximate policy iteration schemes heuristic dynamic programming (HDP). The approach is directed to the assessment of convergence of the solution DLQR and the heuristic weighting matrices 􀜳 and 􀜴 of the utility function associated with DLQR. The investigation of convergence properties related to consistency, persistent excitation and polarization of the RLS estimator is performed. The methodology involved in a project achievements online DLQR controllers and is evaluated in a fourth order multivariable dynamic system. / A união das metodologias de controle ótimo e de programação dinâmica tem impulsionado o desenvolvimento de algoritmos para realizações de sistemas de controle discreto do tipo regulador linear quadrático (DLQR). A metodologia utilizada neste trabalho é fundamentada sobre métodos de aprendizagem por reforço baseados em diferenças temporais e programação dinâmica aproximada. O método proposto combina a aproximação da função valor através do método RLS (mínimos quadrados recursivos) e iteração de política aproximada em esquemas de programação dinâmica heurística (HDP). A abordagem é orientada para a avaliação da convergência da solução DLQR e para a sintonia heurística das matrizes de ponderação 􀜳 e 􀜴da função de utilidade associada ao DLQR. É realizada a investigação das propriedades de convergência relacionadas à consistência, excitação persistente e polarização do estimador RLS. A metodologia contempla realizações de projetos de forma online de controladores DLQR e é avaliada em um sistema dinâmico multivariável de quarta ordem.

Page generated in 0.0928 seconds