• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 681
  • 535
  • 98
  • 79
  • 53
  • 46
  • 37
  • 31
  • 27
  • 23
  • 21
  • 21
  • 21
  • 21
  • Tagged with
  • 2622
  • 2622
  • 567
  • 488
  • 483
  • 350
  • 344
  • 312
  • 303
  • 302
  • 301
  • 274
  • 264
  • 250
  • 237
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

A Preliminary Study of New Anchorage Designs for Strengthening RC Beams with Externally Bonded FRP Composite Materials

Haber, Zachary 01 January 2006 (has links)
ln the past twenty years a great deal of research has been conducted on the use of externally bonded CFRP sheets for strengthening RC beams. It has been found that various anchorage designs at the ends of the bonded sheets could lead to different load-deflection characteristics and failure modes in the beams. This study presents results from an experimental study on new anchorage designs for strengthening RC Beams in flexure with externa1ly bonded CFRP sheets. Nine specimens were tested in four-point bending. The test variables include anchorage design, bond length, and mid-span bond. Anchorage is achieved by a mechanism that clamps the sheet-ends into a groove that is cut into the tension side of the RC beam. Two clamping approaches are adopted. One employs a bolted steel bar and rubber bearing pad; the other employs a plug and epoxy filling.
322

Tests of reinforced concrete short columns laterally strengthened with wire rope units and steel elements

Yang, Keun-Hyeok, Ashour, Ashraf January 2007 (has links)
Yes / The current paper presents a simple unbonded-type column strengthening technique with wire rope units and few steel elements. Eleven short columns were strengthened using the proposed procedure and tested under monotonic concentric axial loads. The main variables investigated to evaluate the confinement effectiveness of strengthened concrete columns were the volume ratio, prestress, diameter, spacing and configuration of wire rope units. The strength gain factor and ductility ratio increased with the increase of volume ratio of wire ropes. The prestress applied to wire ropes had little influence on the strength gain factor but the ductility ratio decreased with the increase of prestress in the wire ropes, owing to earlier rupture of wire ropes. At the same volume ratio of wire ropes, the maximum strength of columns was nearly independent on the configuration of the wire ropes, but higher ductility was exhibited by columns strengthened with rectangular spiral-type wire ropes than by columns strengthened with hoop-type wire ropes, until rupture of the wire ropes. The strength gain factor and ductility ratio of strengthened columns were compared with those of tied columns tested in a previous study. The load capacity of strengthened columns was also predicted using the ACI 318-05 equation modified to reflect the load-carrying effect of steel elements. A much higher strength gain factor and ductility ratio were exhibited by strengthened columns than tied columns having the same lateral reinforcement, except for strengthened columns with wire rope spacing above 0.5 times core width. The axial load capacity of strengthened columns was higher than that of unstrengthened columns by 5¿20%, and could be reasonably predicted using the modified ACI 318-05 equation.
323

Axial behavior of reinforced concrete short columns strengthened with wire rope and T-shaped steel plate units.

Yang, Keun-Hyeok, Ashour, Ashraf, Lee, E-T. 03 1900 (has links)
yes / This paper presents a relatively simple column strengthening procedure using unbonded wire rope and T-shaped steel plate units. Twelve strengthened columns and an unstrengthened control column were tested to failure under concentric axial load to explore the significance and shortcomings of the proposed strengthening technique. The main variables investigated were the volume ratio of wire ropes as well as geometrical size and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and models developed for conventionally tied columns, respectively. The measured axial load capacities of all strengthened columns were higher than predictions obtained from ACI 318-05, indicating that the ratio of the measured and predicted values increased with the increase of volume ratio of wire ropes and flange width of T-shaped steel plates. In addition, at the same lateral reinforcement index, a much higher ductility ratio was exhibited by strengthened columns having a volume ratio of wire ropes above 0·0039 than tied columns. The ductility ratio of strengthened columns tested increased with the increase of flange width, thickness, and web height of T-shaped steel plates. A mathematical model for the prediction of stress–strain characteristics of confined concrete using the proposed strengthening technique is developed, that was in good agreement with test results.
324

Tests of demountable reinforced concrete slabs

Almahmood, Hanady A.A., Ashour, Ashraf, Figueira, Diogo, Yildirim, Gurkan, Aldemir, A., Sahmaran, M. 24 October 2022 (has links)
Yes / This paper presents an experimental investigation of demountable reinforced concrete slabs using dry connections between reinforced concrete slab elements. The test specimens comprised six full-scale reinforced concrete slabs; one control slab monolithically cast, while the other five slabs were produced with mid-span demountable dry connections. The slab elements were cast separately and assembled using top and bottom steel plates joined to each side of the slab element by high tensile steel bolts with or without a shear key and embedded steel block. Theoretical analysis of the behaviour of the demountable slabs tested in comparison with the control specimen was also conducted. The test results showed that using a dry connection consisting of a shear key at the assembled section is the most effective technique in terms of moment resistance, deflection, and flexural stiffness. On the other hand, the dry connection with embedded steel blocks failed prematurely because of stress concentration at the block edges. The moment capacity and deflection predictions of demountable slabs have reasonably correlated with the experimental results but required additional calibrated data from experiments. / This work was supported by an Institutional Links grant, ID 414633184, under the Newton-Kâtip Çelebi Fund partnership. The grant is funded by the UK Department for Business, Energy and Industrial Strategy and TÜBİTAK – Scientific and Technological Research Council of Turkey and delivered by the British Council. For further information, please visit www.newtonfund.ac.uk.
325

The mechanical and volumetric behaviour of sisal fibre reinforced concrete blocks

Coetzee, Gerrit 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Natural fibre reinforced concrete (NFRC) is a type of concrete that has become of particular interest in recent years, due to its potential for being used as a sustainable and economically viable building material. Natural fibres are often cheap and widely available in developing nations. Sisal is one such fibre predominantly grown in Brazil and has been identified as having the potential to be commercially cultivated in Southern Africa. The durability of sisal fibres in a cementitious environment tends to be adversely affected due to the high alkalinity of pore water and the presence of calcium hydroxide. This research dealt with the use of sisal fibre reinforced concrete (SFRC) blocks. It focused on the mechanical and volumetric properties of blocks with varying fibre and condensed silica fume content (CSF). Two different SFRC blocks were produced (solid and hollow) using an average fibre length of 10 mm. Two matrix types were used: one using a 70:30 cement:fly-ash ratio and another using a 60:30:10 cement:fly-ash:CSF ratio by weight. Samples of each matrix type were prepared with 0, 0.5 and 1% fibre content by volume. Hollow blocks were tested for compressive strength and capillary water absorption, while solid blocks were tested for compressive strength, flexural strength, capillary water absorption, dimensional stability, drying shrinkage, density, total water absorption and void content. All tests were performed on samples with an age of 28 days. Solid block compressive tests were also performed on samples with an age of 7 days. The hollow blocks had significantly lower average compression strength than the solids, but an increase in fibre content caused a slight increase in strength. For solid blocks, it was found that the addition of natural fibres decreases the strength, although a partial substitution of cement with CSF, in conjunction with fibres, did increase the strength relative to blocks without CSF. The flexure strength was also lowered somewhat by the addition of fibres, but an increase in ductility was noted, although not quantified. The addition of CSF to fibre-containing blocks led to an increase in capillary water absorption, but a decrease in absorption through immersion. This shows that the addition of CSF does significantly alter the pore system of a cementitious matrix reinforced with natural fibres. Also, the dimensional stability increased with the addition of CSF and fibres. The same can be said for drying shrinkage. Even though an increase in fibre and CSF caused samples to shrink more under drying, they were more stable under cycles of wetting and drying. It was concluded that the addition of fibres to a matrix had a detrimental effect on strength, although ductility did increase. The volumetric properties of concrete were also adversely affected by the addition of fibres, although dimensional stability was improved. The partial substitution of cement with CSF did improve many of the mechanical and volumetric properties of samples containing sisal fibre. / AFRIKAANSE OPSOMMING: Natuurlike vesel bewapende beton (NVBB) is ’n tipe beton wat onlangs heelwat belangstelling ontlok het weens die potensiaal om gebruik te word as ‘n volhoubare en ekonomiese haalbare boumateriaal. Natuurlike vesels is dikwels baie goedkoop en wyd beskikbaar in ontwikkelende lande. Sisal is een so ‘n vesel wat verkry word vanaf die blare van ’n garingboom. Die plant word hoofsaaklik in Brasilië verbou en is al uitgewys weens sy potensiaal om op kommersiële skaal in Suidelike Afrika verbou te word. Die duursaamheid van sisal vesels is geneig om nadelig geaffekteer te word in die teenwoordigheid van kalsium hidroksied en ’n hoë-alkali omgewing, soos gevind in die porie-water van beton. Hierdie navorsing handel oor die gebruik van sisal vesel bewapende beton (SVBB) boublokke. Dit fokus op die meganiese- en duursaamheids eienskappe van blokke met verkillende inhoude van vesel en gekondenseerde silika dampe (GSD). Twee verskillende SVBB blokke is geproduseer (solied en hol) deur gebruik te maak van 10 mm vesels. Twee matriks tipes is gebruik: een met ’n 70:30 sement:vliegas verhouding en een met ’n 60:30:10 sement:vliegas:GSD verhouding, volgens gewig. Blokke van elke matriks tipe is geproduseer met 0, 0.5 en 1% vesel inhoud, volgens volume. Hol blokke is getoets vir druksterkte en kapillêre water absorpsie, terwyl soliede blokke getoets is vir druksterkte, buigsterkte, kapillêre water absorpsie, dimensionele stabiliteit, krimp onder uitdroging, digtheid, totale water absorpsie en luginhoud. Alle toetse is gedoen op blokke met ’n ouderdom van 28 dae. Druktoetse is ook gedoen op soliede blokke met ’n ouderdom van 7 dae. Die hol blokke het ’n aansienlike laer gemiddelde druksterkte as die soliede blokke gehad, maar ’n toename in veselinhoud het gelei tot ’n effense verhoging in druksterkte. ’n Toename in veselinhoud van soliede blokke het gelei tot ’n afname in druksterkte, alhoewel ’n gedeeltelike vervanging van sement met GSD gelei het tot ’n hoër druksterkte vir blokke met vesels. Die buigsterkte van soliede blokke het ook afgeneem met ’n verhoging in veselinhoud. ’n Verhoging in duktiliteit is waargeneem met ’n toename in veselinhoud, alhoewel dit nie gekwantifiseer is nie. Die toevoeging van GSD tot blokke bevattende vesels het gelei tot ’n verhoging in kapillêre water absorpsie, maar ’n verlaging in totale water absorpsie. Dit kan daarop wys dat die toevoeging van GSD die poriestelsel van NVBB noemenswaardig verander. Beide die dimensionele stabiliteit en krimp onder uitdroging het toegeneem met die toevoeging van GSD en vesels tot die blokke. Dus, die toevoeging het gelei tot ’n hoër krimpvervorming tydens uitdroging en ’n hoër stabiliteit tydens nat/droog siklusse. Daar is tot die gevolgtrekking gekom dat die toevoeging van sisal vesels tot ’n beton blok oor die algemeen ’n negatiewe effek het op sterkte, alhoewel duktiliteit toeneem. Die volumetriese eienskappe van beton word ook negatief geaffekteer met die toevoeging van sisal vesels, alhoewel dimensionele stabiliteit verbeter. Die gedeeltelike vervanging van sement met GSD lei tot die verbetering van beide meganiese en volumetriese eienskappe van beton blokke wat sisal vesels bevat.
326

Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets

Lau, Shuk-lei., 劉淑妮. January 2005 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
327

Flexural ductility improvement of FRP-reinforced concrete members

Lau, Tak-bun, Denvid., 劉特斌. January 2006 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
328

Constitutive modelling and finite element analysis of reinforced concrete structures

Ng, Pui-lam., 吳沛林. January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Doctoral / Doctor of Philosophy
329

Flexural Behavior of Concrete Using Basalt FRP Rebar

Unknown Date (has links)
The objective of this research is to determine if the deflection equations currently adopted in ACI 440.1r-15 and previously ACI 440.1r-06 accurately reflect the flexural behavior of an overreinforced Basalt Fiber Reinforced Polymer (BFRP) concrete beam. This was accomplished with experimental, analytical and numerical models. The experiment consisted of two beams doublyreinforced with BFRP rebar. A three-point flexural test on beams with a 30 in. clear span was performed and the deflections were recorded with a dial gauge and LVDT system. This data was compared to the equations from ACI 440.1r-06, ACI 440.1r-15, Branson’s equation and a numerical model created in ANSYS Mechanical APDL. Experimental results show a stiffer beam than expected when compared to the four predictive models for deflection. This can be due to the level of over-reinforcement and the small clear-span to depth ratio. Further research should be conducted to determine the cause for the additional stiffness. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
330

Strength and durability of fly ash-based fiber-reinforced geopolymer concrete in a simulated marine environment

Unknown Date (has links)
This research is aimed at investigating the corrosion durability of polyolefin fiber-reinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.

Page generated in 0.0521 seconds