Spelling suggestions: "subject:"remaininguseful"" "subject:"remaininglife""
31 |
Estimation du RUL par des approches basées sur l'expérience : de la donnée vers la connaissance / Rul estimation using experience based approached : from data to knwoledgeKhelif, Racha 14 December 2015 (has links)
Nos travaux de thèses s’intéressent au pronostic de défaillance de composant critique et à l’estimation de la durée de vie résiduelle avant défaillance (RUL). Nous avons développé des méthodes basées sur l’expérience. Cette orientation nous permet de nous affranchir de la définition d’un seuil de défaillance, point problématique lors de l’estimation du RUL. Nous avons pris appui sur le paradigme de Raisonnement à Partir de Cas (R à PC) pour assurer le suivi d’un nouveau composant critique et prédire son RUL. Une approche basée sur les instances (IBL) a été développée en proposant plusieurs formalisations de l’expérience : une supervisée tenant compte de l’ état du composant sous forme d’indicateur de santé et une non-supervisée agrégeant les données capteurs en une série temporelle mono-dimensionnelle formant une trajectoire de dégradation. Nous avons ensuite fait évoluer cette approche en intégrant de la connaissance à ces instances. La connaissance est extraite à partir de données capteurs et est de deux types : temporelle qui complète la modélisation des instances et fréquentielle qui, associée à la mesure de similarité permet d’affiner la phase de remémoration. Cette dernière prend appui sur deux types de mesures : une pondérée entre fenêtres parallèles et fixes et une pondérée avec projection temporelle. Les fenêtres sont glissantes ce qui permet d’identifier et de localiser l’état actuel de la dégradation de nouveaux composants. Une autre approche orientée donnée a été test ée. Celle-ci est se base sur des caractéristiques extraites des expériences, qui sont mono-dimensionnelles dans le premier cas et multi-dimensionnelles autrement. Ces caractéristiques seront modélisées par un algorithme de régression à vecteurs de support (SVR). Ces approches ont été évaluées sur deux types de composants : les turboréacteurs et les batteries «Li-ion». Les résultats obtenus sont intéressants mais dépendent du type de données traitées. / Our thesis work is concerned with the development of experience based approachesfor criticalcomponent prognostics and Remaining Useful Life (RUL) estimation. This choice allows us to avoidthe problematic issue of setting a failure threshold.Our work was based on Case Based Reasoning (CBR) to track the health status of a new componentand predict its RUL. An Instance Based Learning (IBL) approach was first developed offering twoexperience formalizations. The first is a supervised method that takes into account the status of thecomponent and produces health indicators. The second is an unsupervised method that fuses thesensory data into degradation trajectories.The approach was then evolved by integrating knowledge. Knowledge is extracted from the sensorydata and is of two types: temporal that completes the modeling of instances and frequential that,along with the similarity measure refine the retrieval phase. The latter is based on two similaritymeasures: a weighted one between fixed parallel windows and a weighted similarity with temporalprojection through sliding windows which allow actual health status identification.Another data-driven technique was tested. This one is developed from features extracted from theexperiences that can be either mono or multi-dimensional. These features are modeled by a SupportVector Regression (SVR) algorithm. The developed approaches were assessed on two types ofcritical components: turbofans and ”Li-ion” batteries. The obtained results are interesting but theydepend on the type of the treated data.
|
32 |
Metody technické prognostiky aplikovatelné v embedded systémech / Methods of Technical Prognostics Applicable to Embedded SystemsKrupa, Miroslav January 2012 (has links)
Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.
|
33 |
Contribution à la modélisation et au pronostic des défaillances d'une machine synchrone à aimants permanents / Contribution to the modelisation and failure prognosis in a synchrone permanent magnet motorGinzarly, Riham 26 September 2019 (has links)
L’objectif de ce travail est d’élaborer un modèle performant/précis de la machine électrique permettant de proposer une technique de pronostic. Dans cette thèse, nous commençons par un état de l’art sur les véhicules électriques hybrides (VHE), les différents types de machines électriques utilisées dans les VHE ainsi que les différents types de défauts pouvant survenir dans ces machines électriques. Nous identifions également les indicateurs de défauts appropriés aux différents défauts considérés. Ensuite, une synthèse de techniques de pronostic pouvant être appliquées est proposée. Le modèle à éléments finis électromagnétiques, thermiques et vibratoires (FEM) de la machine à aimants permanents est présenté. Le modèle est élaboré en fonctionnement normal et défaillant. Les types de défauts considérés sont : démagnétisation, court-circuit et excentricité. Une comparaison entre les deux approches analytique et FEM (méthode numérique) pour la modélisation de machines électromagnétiques est effectuée. Les indicateurs de défauts analysés pour l’extraction les plus pertinents utilisent les différents signaux mesurées suivants : le couple, la température ainsi que les signaux vibratoires en états sains et défectueux. L’approche de pronostic adoptée qui est le modèle de Markov caché (HMM) est développée. L'aspect technique de la méthode est présenté et le module du pronostic est formulé. La méthode de HMM est utilisée pour détecter et localiser les défauts à petites amplitudes. Une stratégie systématique a été développée. Le vieillissement de l’équipement de la machine, en particulier des éléments sensibles comme la bobine de stator et l’aimant permanent, est une question très importante pour le calcul du RUL (Remaining Useful Life). Une stratégie d’estimation pour le calcul RUL est présentée et discutée. La configuration en boucle fermée est très importante. Elle est adoptée par tous les systèmes de véhicules disponibles. Par conséquent, les mêmes étapes mentionnées précédemment s'appliquent également à une configuration en boucle fermée. Un modèle global où l’entrée du FEM de la machine provient de l’onduleur modélisé est élaboré. / The core of the work is to build an accurate model of the electrical machine where the prognostic technique is applied. In this thesis we started by a literature review on hybrid electric vehicles (HEV), the different types of electrical machine used in HEV’s and the different types of faults that may occur in those electrical machine. We also identify the useful monitoring parameters that are beneficial for those different types of faults. Then, a survey is presented where all the prognostic techniques that can be applied on this application are enumerated. The electromagnetic, thermal and vibration finite element model (FEM) of the permanent magnet machine is presented. The model is built at healthy operation and when a fault is integrated. The considered types of faults are:demagnetization, turn to turn short circuit and eccentricity. A confrontation between analytical and FEM (numerical method) for electromagnetic machine modeling is illustrated. Fault indicators where useful measured parameters forfault identification are recognized and useful features from the measured parameters are extracted; torque, temperature and vibration signal are elaborated for healthy and faulty states. The strategy of the adopted prognostic approach which is Hidden Markov Model (HMM) is explained. The technical aspect of the method is presented and the prognostic model is formulated. HMM is applied to detect and localize small scale fault small scale faults were where a systematic strategy is developed. The aging of the machine’s equipment,specially the sensitive ones that are the stator coil’s and the permanent magnet, is a very important matter for RUL calculation. An estimation strategy for RUL calculation is presented and discussed for those mentioned machine’s components. Closed loop configuration is very important; it is adopted by all available vehicle systems. Hence, the same previously mentioned steps are applied for a closed loop configuration too. A global model where the input of the machine’s FEM comes from the modeled inverter is built.
|
34 |
Health Monitoring for Aircraft Systems using Decision Trees and Genetic EvolutionGerdes, Mike January 2019 (has links) (PDF)
Reducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed. A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.
|
35 |
Production 4.0 of Ring Mill 4 Ovako ABHassan, Muhammad January 2020 (has links)
Cyber-Physical System (CPS) or Digital-Twin approach are becoming popular in industry 4.0 revolution. CPS not only allow to view the online status of equipment, but also allow to predict the health of tool. Based on the real time sensor data, it aims to detect anomalies in the industrial operation and prefigure future failure, which lead it towards smart maintenance. CPS can contribute to sustainable environment as well as sustainable production, due to its real-time analysis on production. In this thesis, we analyzed the behavior of a tool of Ringvalsverk 4, at Ovako with its twin model (known as Digital-Twin) over a series of data. Initially, the data contained unwanted signals which is then cleaned in the data processing phase, and only before production signal is used to identify the tool’s model. Matlab’s system identification toolbox is used for identifying the system model, the identified model is also validated and analyzed in term of stability, which is then used in CPS. The Digital-Twin model is then used and its output being analyzed together with tool’s output to detect when its start deviate from normal behavior.
|
Page generated in 0.0751 seconds