• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Introdução às frações contínuas / Introduction to continued fractions

Silva, Sebastião Alves da 06 September 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-12T20:44:03Z No. of bitstreams: 1 SebastiaoAlvesSilva.pdf: 1093667 bytes, checksum: 7d7111ace431e2e93ddfa2af4ec78c6c (MD5) / Made available in DSpace on 2017-06-12T20:44:03Z (GMT). No. of bitstreams: 1 SebastiaoAlvesSilva.pdf: 1093667 bytes, checksum: 7d7111ace431e2e93ddfa2af4ec78c6c (MD5) Previous issue date: 2016-09-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work we make a presentation on continued fractions, from its intuitive historical origin, along with the evolution and maturation of their concept to get your formal mathematical definition. We use continued fractions to represent the real numbers, sort irrational numbers, as well as some of its applications in solving problems ranging from real numbers approximations by rational numbers, solving linear Diophantine equations in two variables, calculation of numerical roots resolution exponential and logarithmic equations, solving geometry problems. In addition, we present what we consider to be classic problems solved by continued fractions, they are: construction of gears, analysis of lunar eclipses, and analysis of construction schedules. / Neste trabalho fazemos uma apresentação sobre frações contínuas, desde sua origem histórica intuitiva, juntamente com a evolução e maturação de seu conceito até chegar a sua definição matemática formal. Utilizamos frações contínuas para representar os números reais, classificar números irracionais, bem como algumas de suas aplicações na resolução de problemas, que vão de aproximações de números reais por números racionais, resolução de equações diofantinas lineares de duas variáveis, cálculo de raízes numéricas, resolução de equações exponenciais e logarítmicas, resolução de problemas de Geometria. Além disso, apresentamos o que consideramos serem problemas clássicos resolvidos por fações contínuas, são eles: construção de engrenagens, análises de eclipses lunares, e análise da construção de calendários.

Page generated in 0.1311 seconds