• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sources of variability in pre-Bötzinger complex rhythmic patterns generated by a transverse slice : a simulation study

Gerken, William C. 08 1900 (has links)
No description available.
2

EFFECTS OF PURSED LIP BREATHING AND BILATERAL CHEST WALL AUGMENTATION ON SLOWING RESPIRATORY RATES.

Fassett, Ann Carleton. January 1983 (has links)
No description available.
3

The effect of steadiness testing on the variability of respiration

Phelps, Mary Louise, 1913- January 1934 (has links)
No description available.
4

EFFECTS OF AIRWAY SUCTION ON FUNCTIONAL RESIDUAL CAPACITY AND ARTERIAL OXYGEN TENSION IN NORMAL DOGS.

Muenchau, Theresa Ann. January 1983 (has links)
No description available.
5

Phase locking : a dynamic approach to the study of respiration

Petrillo, Gino Angelo. January 1982 (has links)
No description available.
6

Phase locking : a dynamic approach to the study of respiration

Petrillo, Gino Angelo. January 1982 (has links)
No description available.
7

An Analysis of Respiratory Mechanisms Controlling Exercise Hyperpnea During Cycle Ergometry Conducted at Selected Workloads and Pedal Frequencies

Wise, Charles Hamilton 12 1900 (has links)
Respiratory and metabolic patterns in response to variations in exercise workload (WL) and pedal frequency (RPM) were examined in 10 healthy males. Each subject performed WLs of low (L), moderate (M) and high (H) intensity, equivalent to 25%, 50% and 75% V02 m a x at 7 pedal frequencies (40, 50, 60, 70, 80, 90 and 100 RPM). ANOVA ( 3 X 7 design) indicated that WL and RPM had independent and significant effects on all respiratory and metabolic measures; i.e., the greater the WL and RPM, the higher the HR, V02, VC02, Ve, Fb, Vt, Vt/Ti, Vt/Te and Ti/TtQt and the lower the Ti and Te. However, analysis of the interaction effect revealed different response patterns for Fb, Vt, Ti, Vt/Ti, Vt/Te and Ve among the WLs. During L-WL, increases in RPM produced increases in Ve which were due to progressive increases in both Fb and Vt. However, during M-WL and H-WL, increases in RPM produced increases in Ve which were accomplished by a constant Vt and a progressive increase in Fb. My findings suggest that during low WLs, the signal for Vt is dependent on rate of contraction, while during M-WL and H-WL, the signal for Vt appears to depend on force of contraction and is independent of increasing RPM. When comparing the L-WL and M-WL, alterations in Ve, Fb, Vt/Ti and Vt/Te in relation to increases in pedal frequency were additive. However, when these two lower WLs were compared to the H-WL, the interaction between pedal frequency and Ve, Fb, Vt/Ti and Vt/Te was multiplicative. In addition, the interaction between WL and RPM on Vt and Ti was additive when comparing the M-WL and H-WL and multiplicative when these two lower WLs were compared to the H-WL. Correlation analysis indicated that for all WLs, Te was more highly related to Fb than was Ti, while Vt/Te was more highly related to Ve than was Vt/Ti. Our findings suggest that during M-WL and H-WL, increases in Ve are accomplished by progressive increases in Fb and decreases in Te, while during L-WL, increases in Ve are achieved by progressive increases in both Fb and Vt.
8

The control of respiration and upper airway muscle activity in healthy young men and women

Jordan, Amy Selina. January 2002 (has links) (PDF)
"May 2002." Bibliography: leaves 123-144. Aspects of the control of ventilation and an upper airway dilator muscle (genioglossus) are compared between healthy men and women, in an attempt to identify a gender difference that may contribute to the high male prevalence of sleep apnea.
9

The control of respiration and upper airway muscle activity in healthy young men and women / by Amy Jordan.

Jordan, Amy Selina January 2002 (has links)
"May 2002." / Bibliography: leaves 123-144. / xiv, 144 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aspects of the control of ventilation and an upper airway dilator muscle (genioglossus) are compared between healthy men and women, in an attempt to identify a gender difference that may contribute to the high male prevalence of sleep apnea. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physiology, 2002
10

Circulatory and Respiratory Responses to Cycle Ergometry at Different Pedal Rates

Hernandez, Raymundo 05 1900 (has links)
The effects of moderate workload exercise at different pedal rates on circulatory and respiratory parameters were studied. Five subjects performed seven discontinuous constant-load cycle ergometer tests of 30 minutes duration at pedal rates of 40, 50, 60, 70, 80, 90 and 100 rpm. Oxygen uptake and carbon dioxide production were determined by standard open circuit spirometry, while heart rate was recorded by electrocardiograph. The CO₂ rebreathing procedure was administered during the exercise bout in order to determine cardiac output. Blood pressure was determined for each test, and total peripheral resistance was calculated. The findings indicate that progressive increases in pedal frequency during discontinuous constant-load cycle ergometry produce progressive increases in cardiovascular, respiratory and metabolic responses and a decrease in gross exercise mechanical efficiency. The results indicate that oxygen uptake, cardiac output, heart rate, ventilation and arterial-venous oxygen difference increases curvilinearly as pedal rate increases, possibly as a result of increases in recruitment of muscle fibers and/or muscle groups. These findings suggest that circulatory and respiratory responses are due to "central command" which sets the basic efferent response pattern. However, this effector pattern is modulated by afferent input originating from the legs during progressive increases in pedal rate.

Page generated in 0.1821 seconds