1 |
Turbulent mixing induced by Richtmyer-Meshkov instabilityKrivets, V. V., Ferguson, K. J., Jacobs, J. W. January 2017 (has links)
Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent. where a fairly wide range of values is found varying from theta approximate to 0.2 to 0.6.
|
2 |
Formation de micro-jets depuis des défauts de surface dans des échantillons métalliques soumis à des chocs laser / Microjetting from Surface Defects in Laser Shock-Loaded Metallic SamplesRoland, Caroline 19 December 2017 (has links)
Lorsqu’un matériau solide est soumis à un chargement dynamique (par l’impact d’un projectile, la détonation d’un explosif ou l’irradiation par un laser intense), il se forme une onde de choc, qui se propage dans le matériau depuis la surface chargée. Si cette onde débouche sur une surface libre comportant des défauts géométriques tels que des rugosités, des rayures ou des cavités, son interaction avec ces défauts conduit à l’éjection, sous forme de jets de matière, de débris dont la taille caractéristique est de l’ordre du micromètre et dont la vitesse est typiquement de quelques km/s. La maîtrise de ce processus, appelé microjetting ou micro-éjection, est essentielle pour de nombreuses applications (conception de blindage, découpe pyrotechnique, usinage à très haute vitesse, expériences de Fusion par Confinement Inertiel…). Dans le cadre de cette thèse, menée en collaboration avec le centre CEA de Bruyères-le-Châtel, ce phénomène est étudié dans quatre métaux (Aluminium, Etain, Cuivre et Plomb) à partir de rainures calibrées de deux types : triangulaires isolées de demi-angles d’ouverture contrôlés (20°, 30° et 45°) ou sinusoïdales périodiques. Les influences du matériau, de la forme et de l’ouverture des défauts, de la pression de choc et de l’état du milieu (solide ou fondu sous choc ou en détente) sur les propriétés balistiques des éjectas (vitesses de jet, distribution en taille et densité surfacique des débris constituant les jets) sont évaluées via trois approches complémentaires : expérimentale, théorique et numérique.L’étude expérimentale comporte plusieurs campagnes de chocs laser, effectuées sur l’installation LULI2000 du Laboratoire pour l’Utilisation des Lasers Intenses (Ecole Polytechnique, Palaiseau), avec plusieurs techniques de diagnostic : Ombroscopie Transverse, Vélocimétrie Hétérodyne, radiographie X rapide in-situ, récupération d’éjectas dans des gels (analysés ensuite en microtomographie). Les résultats sont confrontés à des prédictions théoriques (hydrodynamique des chocs obliques et des charges creuses pour les rainures triangulaires, instabilités de Richtmyer-Meshkov pour les rainures sinusoïdales). Enfin, les simulations numériques réalisées avec le code Radioss utilisent deux approches complémentaires : les Eléments Finis Lagrangiens et la formulation SPH (Smoothed Particles Hydrodynamics), encore très peu appliquée au microjetting, plus empirique que la première mais mieux adaptée aux grandes déformations dans les jets et permettant d’accéder à des distributions de tailles de fragments / When a dense material is subjected to a dynamic load (such as projectile impact, explosive detonation or irradiation by a high energy laser beam), a shock wave propagates from the loaded surface. If this shock wave interacts with a free surface with geometrical defects such as grooves, scratches or cavities, it can lead to the ejection of micrometric debris with typical velocities of a few km/s. Understanding this microjetting process is a key issue for many applications, including shielding design, pyrotechnics, high-speed machining and Inertial Confinement Fusion experiments.In this work in collaboration with the CEA-DIF at Bruyères-le-Châtel, this phenomenon is studied under laser-driven shock loading in four materials (Aluminum, Tin, Copper and Lead) with calibrated grooves of two types: isolated triangular profile with controlled aperture half-angles (20°, 30° and 45°) or periodic sinusoidal shape. The influences of the material, of the geometry of the defects, of the shock pressure and of the state of matter (solid or melted under shock or release wave) on the ballistic properties of the ejecta (jet velocity, size distribution and areal mass of the debris constituting the jet) are investigated with three complementary approaches: experimental, theoretical and numerical.The experimental study involves several campaigns performed at the LULI2000 facility of the Laboratoire pour l’Utilisation des Lasers Intenses (Ecole Polytechnique, Palaiseau) and complementary diagnostic techniques: Transverse Shadowgraphy, Heterodyne Velocimetry, fast in situ X-ray radiography, recovery of the ejecta in a gel followed by microtomography. The results are compared with theoretical predictions (2D shocks and shaped charges hydrodynamics for the triangular grooves, Richtmyer-Meshkov Instabilities for the sinusoidal grooves). Then, numerical simulations are performed with the Radioss code with two complementary approaches: the Lagrangian Finite Elements and the SPH (Smoothed Particles Hydrodynamics) formulation, still very scarcely applied to microjetting, more empirical than the first approach but more suitable to the high strains in the jets and allowing access to size distributions of the debris.
|
Page generated in 0.0731 seconds