Spelling suggestions: "subject:"ridgeregression"" "subject:"degression""
21 |
INFERENCE AFTER VARIABLE SELECTIONPelawa Watagoda, Lasanthi Chathurika Ranasinghe 01 August 2017 (has links)
This thesis presents inference for the multiple linear regression model Y = beta_1 x_1 + ... + beta_p x_p + e after model or variable selection, including prediction intervals for a future value of the response variable Y_f, and testing hypotheses with the bootstrap. If n is the sample size, most results are for n/p large, but prediction intervals are developed that may increase in average length slowly as p increases for fixed n if the model is sparse: k predictors have nonzero coefficients beta_i where n/k is large.
|
22 |
Calibration of Option Pricing in Reproducing Kernel Hilbert SpaceGe, Lei 01 January 2015 (has links)
A parameter used in the Black-Scholes equation, volatility, is a measure for variation of the price of a financial instrument over time. Determining volatility is a fundamental issue in the valuation of financial instruments. This gives rise to an inverse problem known as the calibration problem for option pricing. This problem is shown to be ill-posed. We propose a regularization method and reformulate our calibration problem as a problem of finding the local volatility in a reproducing kernel Hilbert space. We defined a new volatility function which allows us to embrace both the financial and time factors of the options. We discuss the existence of the minimizer by using regu- larized reproducing kernel method and show that the regularizer resolves the numerical instability of the calibration problem. Finally, we apply our studied method to data sets of index options by simulation tests and discuss the empirical results obtained.
|
23 |
Kernel Methods for RegressionRossmann, Tom Lennart January 2023 (has links)
Kernel methods are a well-studied approach for addressing regression problems by implicitly mapping input variables into possibly infinite-dimensional feature spaces, particularly in cases where standard linear regression fails to capture non-linear relationships in data. Therefore, the choice between standard linear regression and kernel regression can be seen as a tradeoff between constraints on the number of features and the number of training samples. Our results show that the Gaussian kernel consistently achieves the lowest mean squared error for the largest considered training size. At the same time, the standard ridge regression exhibits a higher mean squared error and lower fit time. We have proven algebraically that the solutions of standard ridge regression and kernel ridge regression are mathematically equivalent.
|
24 |
A comparison of three prediction based methods of choosing the ridge regression parameter kGatz, Philip L., Jr. 15 November 2013 (has links)
A solution to the regression model y = xβ+ε is usually obtained using ordinary least squares. However, when the condition of multicollinearity exists among the regressor variables, then many qualities of this solution deteriorate. The qualities include the variances, the length, the stability, and the prediction capabilities of the solution.
An analysis called ridge regression introduced a solution to combat this deterioration (Hoerl and Kennard, 1970a). The method uses a solution biased by a parameter k. Many methods have been developed to determine an optimal value of k. This study chose to investigate three little used methods of determining k: the PRESS statistic, Mallows' C<sub>k</sub>. statistic, and DF-trace. The study compared the prediction capabilities of the three methods using data that contained various levels of both collinearity and leverage. This was completed by using a Monte Carlo experiment. / Master of Science
|
25 |
Regulariserad linjär regression för modellering av företags valutaexponering / Regularised Linear Regression for Modelling of Companies' Currency ExposureHahn, Karin, Tamm, Erik January 2021 (has links)
Inom fondförvaltning används kvantitativa metoder för att förutsäga hur företags räkenskaper kommer att förändras vid nästa kvartal jämfört med motsvarande kvartal året innan. Banken SEB använder i dag multipel linjär regression med förändring av intäkter som beroende variabel och förändring av valutakurser som oberoende variabler. Det är problematiskt av tre anledningar. Först och främst har valutor ofta stor multikolinjäritet, vilket ger instabila skattningar. För det andra det kan ett företags intäkter bero på ett urval av de valutor som används som data varför regression inte bör ske mot alla valutor. För det tredje är nyare data mer relevant för prediktioner. Dessa problem kan hanteras genom att använda regulariserings- och urvalsmetoder, mer specifikt elastic net och viktad regression. Vi utvärderar dessa metoder för en stor mängd företag genom att jämföra medelabsolutfelet mellan multipel linjär regression och regulariserad linjär regression med viktning. Utvärderingen visar att en sådan modell presterar bättre i 65,0 % av de företag som ingår i ett stort globalt aktieindex samt får ett medelabsolutfel på 14 procentenheter. Slutsatsen blir att elastic net och viktad regression adresserar problemen med den ursprungliga modellen och kan användas för bättre förutsägelser av intäkternas beroende av valutakurser. / Quantative methods are used in fund management to predict the change in companies' revenues at the next quarterly report compared to the corresponding quarter the year before. The Swedish bank SEB already uses multiple linear regression with change of revenue as the depedent variable and change of exchange rates as independent variables. This is problematic for three reasons. Firstly, currencies often exibit large multicolinearity, which yields volatile estimates. Secondly, a company's revenue can depend on a subset of the currencies included in the dataset. With the multicolinearity in mind, it is benifical to not regress against all the currencies. Thirdly, newer data is more relevant for the predictions. These issues can be handled by using regularisation and selection methods, more specifically elastic net and weighted regression. We evaluate these methods for a large number of companies by comparing the mean absolute error between multiple linear regression and regularised linear regression with weighting. The evaluation shows that such model performs better for 65.0% of the companies included in a large global share index with a mean absolute error of 14 percentage points. The conclusion is that elastic net and weighted regression address the problems with the original model and can be used for better predictions of how the revenues depend on exchange rates.
|
26 |
Evaluating the Use of Ridge Regression and Principal Components in Propensity Score Estimators under MulticollinearityGripencrantz, Sarah January 2014 (has links)
Multicollinearity can be present in the propensity score model when estimating average treatment effects (ATEs). In this thesis, logistic ridge regression (LRR) and principal components logistic regression (PCLR) are evaluated as an alternative to ML estimation of the propensity score model. ATE estimators based on weighting (IPW), matching and stratification are assessed in a Monte Carlo simulation study to evaluate LRR and PCLR. Further, an empirical example of using LRR and PCLR on real data under multicollinearity is provided. Results from the simulation study reveal that under multicollinearity and in small samples, the use of LRR reduces bias in the matching estimator, compared to ML. In large samples PCLR yields lowest bias, and typically was found to have the lowest MSE in all estimators. PCLR matched ML in bias under IPW estimation and in some cases had lower bias. The stratification estimator was heavily biased compared to matching and IPW but both bias and MSE improved as PCLR was applied, and for some cases under LRR. The specification with PCLR in the empirical example was usually most sensitive as a strongly correlated covariate was included in the propensity score model.
|
27 |
A new biased estimator for multivariate regression models with highly collinear variables / Ein neuer verzerrter Schätzer für lineare Regressionsmodelle mit stark korrelierten RegressorenWissel, Julia January 2009 (has links) (PDF)
Es ist wohlbekannt, dass der Kleinste-Quadrate-Schätzer im Falle vorhandener Multikollinearität eine große Varianz besitzt. Eine Möglichkeit dieses Problem zu umgehen, besteht in der Verwendung von verzerrten Schätzern, z.B den Ridge-Schätzer. In dieser Arbeit wird ein neues Schätzverfahren vorgestellt, dass auf Addition einer kleinen Konstanten omega auf die Regressoren beruht. Der dadurch erzeugte Schätzer wird in Abhängigkeit von omega beschrieben und es wird gezeigt, dass dessen Mean Squared Error kleiner ist als der des Kleinste-Quadrate-Schätzers im Falle von stark korrelierten Regressoren. / It is well known, that the least squares estimator performs poorly in the presence of multicollinearity. One way to overcome this problem is using biased estimators, e.g. ridge regression estimators. In this study an estimation procedure is proposed based on adding a small quantity omega on some or each regressor. The resulting biased estimator is described in dependence of omega and furthermore it is shown that its mean squared error is smaller than the one corresponding to the least squares estimator in the case of highly correlated regressors.
|
28 |
On Some Ridge Regression Estimators for Logistic Regression ModelsWilliams, Ulyana P 28 March 2018 (has links)
The purpose of this research is to investigate the performance of some ridge regression estimators for the logistic regression model in the presence of moderate to high correlation among the explanatory variables. As a performance criterion, we use the mean square error (MSE), the mean absolute percentage error (MAPE), the magnitude of bias, and the percentage of times the ridge regression estimator produces a higher MSE than the maximum likelihood estimator. A Monto Carlo simulation study has been executed to compare the performance of the ridge regression estimators under different experimental conditions. The degree of correlation, sample size, number of independent variables, and log odds ratio has been varied in the design of experiment. Simulation results show that under certain conditions, the ridge regression estimators outperform the maximum likelihood estimator. Moreover, an empirical data analysis supports the main findings of this study. This thesis proposed and recommended some good ridge regression estimators of the logistic regression model for the practitioners in the field of health, physical and social sciences.
|
29 |
改良式脊迴歸分析法於預測模式之應用 / Applied Improved Ridge Regression Analysis周玫芳, Chou, Mei Fang Unknown Date (has links)
當我們在應用迴歸分析法時,往往會遇到兩個或多個自變數間存在著線性
關係的問題,即所謂多重共線性(multicollinearity); 多重共線性的存
在會使得一般被廣泛運用的最小平方估計式 (least square estimator)
出現不穩定的情形。此估計式之總變異(total variance)會因共線性之程
度愈高而發散,呈現出不穩定的現象,進而影響其預測模式的能力。因此
相繼有學者提出改良共線性模式的方法,以期達到較精確且穩健的預測結
果。脊迴歸分析法(Ridge regression analysis) 便是其中之一;對於有
共線性存在之模式,若使用傳統脊估式,其總變異會較最小平方估計式穩
定。但傳統脊估式為一個偏量估計式(biased estimator),故本文考慮採
用Jackknife 取一法以求降低脊迴歸估計式之偏量(bias),此二法併用所
產生之一個新的估計式即本文所謂改良式脊迴歸估計式。本文將應用線性
模式Jackknife 估計式,配合脊迴歸分析法導出改良式脊迴歸估計式。並
另外利用電腦模擬出不同程度之共線性資料以比較分析傳統脊迴歸係數與
改良式脊迴歸係數,此二者於預測模式上之表現。結果顯示:改良式脊迴
歸估計係數對於降低估計偏差方面有顯著之改善,其預測能力亦優於傳統
脊迴歸係數,因此改良式脊迴歸估計式較傳統脊迴歸估計式更加穩定、精
確。迴歸分析是目前應用最廣泛之統計工具,不論是經濟模型、商業方面
以及醫學上之應用等均以求精求準之預測為主要目的,本文提出之改良式
脊迴歸係數,於共線性存在之迴歸模式下兼備了傳統脊迴歸係數穩定估計
式變異以求精,降低估計偏量以求準之優點,因此改良式脊迴歸係數於預
測模式上之貢獻是值得肯定的。
|
30 |
Regression methods in multidimensional prediction and estimationBjörkström, Anders January 2007 (has links)
<p>In regression with near collinear explanatory variables, the least squares predictor has large variance. Ordinary least squares regression (OLSR) often leads to unrealistic regression coefficients. Several regularized regression methods have been proposed as alternatives. Well-known are principal components regression (PCR), ridge regression (RR) and continuum regression (CR). The latter two involve a continuous metaparameter, offering additional flexibility.</p><p>For a univariate response variable, CR incorporates OLSR, PLSR, and PCR as special cases, for special values of the metaparameter. CR is also closely related to RR. However, CR can in fact yield regressors that vary discontinuously with the metaparameter. Thus, the relation between CR and RR is not always one-to-one. We develop a new class of regression methods, LSRR, essentially the same as CR, but without discontinuities, and prove that any optimization principle will yield a regressor proportional to a RR, provided only that the principle implies maximizing some function of the regressor's sample correlation coefficient and its sample variance. For a multivariate response vector we demonstrate that a number of well-established regression methods are related, in that they are special cases of basically one general procedure. We try a more general method based on this procedure, with two meta-parameters. In a simulation study we compare this method to ridge regression, multivariate PLSR and repeated univariate PLSR. For most types of data studied, all methods do approximately equally well. There are cases where RR and LSRR yield larger errors than the other methods, and we conclude that one-factor methods are not adequate for situations where more than one latent variable are needed to describe the data. Among those based on latent variables, none of the methods tried is superior to the others in any obvious way.</p>
|
Page generated in 0.0736 seconds