Spelling suggestions: "subject:"ring theory"" "subject:"ing theory""
1 |
Lowest terms in commutative ringsHasse, Erik Gregory 01 August 2018 (has links)
Putting fractions in lowest terms is a common problem for basic algebra courses, but it is rarely discussed in abstract algebra. In a 1990 paper, D.D. Anderson, D.F. Anderson, and M. Zafrullah published a paper called Factorization in Integral Domains, which summarized the results concerning different factorization properties in domains. In it, they defined an LT domain as one where every fraction is equal to a fraction in lowest terms. That is, for any x/y in the field of fractions of D, there is some a/b with x/y=a/b and the greatest common divisor of a and b is 1. In addition, R. Gilmer included a brief exercise concerning lowest terms over a domain in his book Multiplicative Ideal Theory.
In this thesis, we expand upon those definitions. First, in Chapter 2 we make a distinction between putting a fraction in lowest terms and reducing it to lowest terms. In the first case, we simply require the existence of an equal fraction which is in lowest terms, while the second requires an element which divides both the numerator and the denominator to reach lowest terms. We also define essentially unique lowest terms, which requires a fraction to have only one lowest terms representation up to unit multiples. We prove that a reduced lowest terms domain is equivalent to a weak GCD domain, and that a domain which is both a reduced lowest terms domain and a unique lowest terms domain is equivalent to a GCD domain. We also provide an example showing that not every domain is a lowest terms domain as well as an example showing that putting a fraction in lowest terms is a strictly weaker condition than reducing it to lowest terms.
Next, in Chapter 3 we discuss how lowest terms in a domain interacts with the polynomial ring. We prove that if D[T] is a unique lowest terms domain, then D must be a GCD domain. We also provide an alternative approach to some of the earlier results using the group of divisibility.
So far, all fractions have been representatives of the field of fractions of a domain. However, in Chapter 4 we examine fractions in other localizations of a domain. We define a necessary and sufficient condition on the multiplicatively closed set, and then examine how this relates to existing properties of multiplicatively closed sets.
Finally, in Chapter 5 we briefly examine lowest terms in rings with zero divisors. Because many properties of GCDs do not hold in such rings, this proved difficult. However, we were able to prove some results from Chapter 2 in this more general case.
|
2 |
Two topics in commutative ring theoryDuncan, A. J. January 1988 (has links)
No description available.
|
3 |
Units in integral group rings /Li, Yuanlin, January 1996 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 1997. / Bibliography: leaves 107-113.
|
4 |
Some Properties of Noetherian RingsVaughan, Stephen N. (Stephen Nick) 05 1900 (has links)
This paper is an investigation of several basic properties of noetherian rings. Chapter I gives a brief introduction, statements of definitions, and statements of theorems without proof. Some of the main results in the study of noetherian rings are proved in Chapter II. These results include proofs of the equivalence of the maximal condition, the ascending chain condition, and that every ideal is finitely generated. Some other results are that if a ring R is noetherian, then R[x] is noetherian, and that if every prime ideal of a ring R is finitely generated, then R is noetherian.
|
5 |
Singularities of noncommutative surfacesCrawford, Simon Philip January 2018 (has links)
The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also be singular, in the sense that they have infinite global dimension. Very little is known about singularities of noncommutative rings, particularly those which are not finite over their centre. In this thesis, we are able to give a precise description of the singularities of a few families of examples. In many examples, we lay the foundations of noncommutative singularity theory by giving a precise description of the singularities of the fundamental examples of noncommutative surfaces. We draw comparisons with the fundamental examples of commutative surface singularities, called Kleinian singularities, which arise from the action of a finite subgroup of SL(2; k) acting on a polynomial ring. The main tool we use to study the singularities of noncommutative surfaces is the singularity category, first introduced by Buchweitz in [Buc86]. This takes a (possibly noncommutative) ring R and produces a triangulated category Dsg(R) which provides a measure of "how singular" R is. Roughly speaking, the size of this category reflects how bad the singularity is; in particular, Dsg(R) is trivial if and only if R has finite global dimension. In [CBH98], Crawley-Boevey-Holland introduced a family of noncommutative rings which can be thought of as deformations of the coordinate ring of a Kleinian singularity. We give a precise description of the singularity categories of these deformations, and show that their singularities can be thought of as unions of (commutative) Kleinian singularities. In particular, our results show that deforming a singularity in this setting makes it no worse. Another family of noncommutative surfaces were introduced by Rogalski-Sierra-Stafford in [RSS15b]. The authors showed that these rings share a number of ring-theoretic properties with deformations of type A Kleinian singularities. We apply our techniques to show that the "least singular" example has an A1 singularity, and conjecture that other examples exhibit similar behaviour. In [CKWZ16a], Chan-Kirkman-Walton-Zhang gave a definition for a quantum version of Kleinian singularities. These require the data of a two-dimensional AS regular algebra A and a finite group G acting on A with trivial homological determinant. We extend a number of results in [CBH98] to the setting of quantum Kleinian singularities. More precisely, we show that one can construct deformations of the skew group rings A#G and the invariant rings AG, and then determine some of their ring-theoretic properties. These results allow us to give a precise description of the singularity categories of quantum Kleinian singularities, which often have very different behaviour to their non-quantum analogues.
|
6 |
Factorization in polynomial rings with zero divisorsEdmonds, Ranthony A.C. 01 August 2018 (has links)
Factorization theory is concerned with the decomposition of mathematical objects. Such an object could be a polynomial, a number in the set of integers, or more generally an element in a ring. A classic example of a ring is the set of integers. If we take any two integers, for example 2 and 3, we know that $2 \cdot 3=3\cdot 2$, which shows that multiplication is commutative. Thus, the integers are a commutative ring. Also, if we take any two integers, call them $a$ and $b$, and their product $a\cdot b=0$, we know that $a$ or $b$ must be $0$. Any ring that possesses this property is called an integral domain. If there exist two nonzero elements, however, whose product is zero we call such elements zero divisors. This thesis focuses on factorization in commutative rings with zero divisors.
In this work we extend the theory of factorization in commutative rings to polynomial rings with zero divisors. For a commutative ring $R$ with identity and its polynomial extension $R[X]$ the following questions are considered: if one of these rings has a certain factorization property, does the other? If not, what conditions must be in place for the answer to be yes? If there are no suitable conditions, are there counterexamples that demonstrate a polynomial ring can possess one factorization property and not another? Examples are given with respect to the properties of atomicity and ACCP. The central result is a comprehensive characterization of when $R[X]$ is a unique factorization ring.
|
7 |
An Introduction to Fröberg's ConjectureSemmens, Caroline 01 June 2022 (has links) (PDF)
The goal of this thesis is to make Fröberg's conjecture more accessible to the average math graduate student by building up the necessary background material to understand specific examples where Fröberg's conjecture is true.
|
8 |
Clean Rings & Clean Group RingsImmormino, Nicholas A. 24 July 2013 (has links)
No description available.
|
9 |
Lie isomorphisms of triangular and block-triangular matrix algebras over commutative ringsCecil, Anthony John 24 August 2016 (has links)
For many matrix algebras, every associative automorphism is inner. We discuss results by Đoković that a non-associative Lie automorphism φ of a triangular matrix algebra Tₙ over a connected unital commutative ring, is of the form φ(A)=SAS⁻¹ + τ(A)I or φ(A)=−SJ Aᵀ JS⁻¹ + τ(A)I, where S ∈ Tₙ is invertible, J is an antidiagonal permutation matrix, and τ is a generalized trace. We incorporate additional arguments by Cao that extended Đoković’s result to unital commutative rings containing nontrivial idempotents.
Following this we develop new results for Lie isomorphisms of block upper-triangular matrix algebras over unique factorization domains. We build on an approach used by Marcoux and Sourour to characterize Lie isomorphisms of nest algebras over separable Hilbert spaces.
We find that these Lie isomorphisms generally follow the form φ = σ + τ where σ is either an associative isomorphism or the negative of an associative anti-isomorphism, and τ is an additive mapping into the center, which maps commutators to zero. This echoes established results by Martindale for simple and prime rings. / Graduate
|
10 |
Injetividade e Módulos Pobres / Injectivity and Poor ModulesDos Santos, Helen Samara 29 November 2012 (has links)
O objetivo deste trabalho é estudar algumas classes de anéis. Para isso, introduzimos o conceito de módulo pobre e provamos algumas propriedades básicas destes módulos. Além disso, estudamos quais hipóteses sobre um anel R fazem com que alguma família da classe dos R-módulos seja uma família destituída (famílias tais que todo R-módulo é pobre), uma família sem classe média (famílias tais que todo R-módulo ou é pobre ou é injetivo) ou uma família que é uma utopia (famílias tais que todo R-módulo não é pobre). / The goal of this dissertation is to study certain classes of rings. To this end, we introduce the definition of a poor module and prove some basic properties of these modules. Furthermore, we study which hypotheses on a ring R turn some classes of R-modules into a destitute family (families such that every R-module is poor), a family with no middle class (families such that every R-module is either poor or injective) or a family that is an utopia (families such that every R-module is not poor)
|
Page generated in 0.0607 seconds