• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charakterisierung intrazellulärer, bakterieller Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus

Sauer, Christina. January 1900 (has links)
Würzburg, Univ., Diss., 2000. / Dateien im PDF-Format. Computerdatei im Fernzugriff.
2

Charakterisierung intrazellulärer, bakterieller Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus

Sauer, Christina. January 1900 (has links)
Würzburg, Univ., Diss., 2000. / Dateien im PDF-Format. Computerdatei im Fernzugriff.
3

Charakterisierung intrazellulärer, bakterieller Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus

Sauer, Christina. January 1900 (has links)
Würzburg, Universiẗat, Diss., 2000. / Dateien im PDF-Format.
4

Charakterisierung intrazellulärer, bakterieller Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus / Characterization of intracellular, bacterial endosymbionts in the midgut of different Camponotus species

Sauer, Christina January 2000 (has links) (PDF)
In der vorliegenden Dissertation wurden verschiedene Themenbereiche bearbeitet, die zur Charakterisierung der intrazellulären, bakteriellen Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus beitrugen. Es wurden phylogenetische Untersuchungen mit Hilfe der 16S rDNA-Sequenzen der Symbionten und der Sequenzen der Cytochrom-Oxidase-Untereinheit I (COI-Sequenzen) ihrer Wirte durchgeführt, die zur näheren Klärung der Fragen zu Übertragungsweg und Stellung der Camponotus-Endosymbionten verhalfen. Untersuchungen an dreizehn verschiedenen Camponotus-Arten brachten folgende Ergebnisse. Die intrazellulären Bakterien der Ameisen gehören zur g-Subklasse der Proteobakterien. Innerhalb des 16S-Stammbaumes der Symbionten kann man drei Untergruppen unterscheiden, in denen die einzelnen Arten enger miteinander verwandt sind. Bei den nächstverwandten Bakteriennachbarn der Camponotus-Endosymbionten handelt es sich um die ebenfalls symbiontisch lebenden Bakterien der Gattungen Wigglesworthia und Buchnera. Die Ameisen-Symbionten besitzen in ihren rrs-Genen intervenierende DNA-Sequenzen (IVS), die stabile Sekundärstrukturen ausbilden können. Ihre 16S-Gene sind nicht strangaufwärts von den 23S-Genen lokalisiert. Durch diese genetische Besonderheit ähneln die Camponotus-Symbionten den Buchnera-Symbionten, deren rRNA-Gene auf zwei Transkriptionseinheiten verteilt sind. Innerhalb des Stammbaumes der untersuchten Wirtsameisen existieren ebenfalls drei Untergruppen, deren einzelne Arten enger miteinander verwandt sind. Die direkte Gegenüberstellung des Symbionten-Stammbaumes mit dem der Ameisen zeigt ein weitgehend gleiches Verzweigungsmuster. Beide Dendrogramme zeigen signifikante Übereinstimmungen bezüglich ihrer taxonomischen Beziehungen und legen eine kongruente Entwicklung von Symbionten und Wirten, die nur durch einen vertikalen Übertragungsweg erzeugt werden kann, nahe. Einzige Ausnahme bildete hierbei der C. castaneus-Symbiont, bei dem ein horizontaler Transfer von Symbionten nicht gänzlich ausgeschlossen werden kann. Die im Rahmen dieser Dissertation durchgeführten phylogenetischen Untersuchungen ermöglichten die Benennung einer neuen Symbiontengattung innerhalb der gamma-Subgruppe der Proteobakterien: "Candidatus Blochmannia spp." Histologische Studien der Endosymbiose mit Hilfe von licht- und elektronenmikroskopischen Methoden sollten Fragen zur Symbiontenlokalisation innerhalb adulter Individuen beantworten und die Ergebnisse zum Übertragungsweg der intrazellulären Bakterien festigen. Die Endosymbionten sind in den Mitteldarmepithelien von Arbeiterinnen, Königinnen und Männchen in Myzetozytenzellen lokalisiert, die in das Mitteldarmepithel interkalieren. Diese spezialisierten Zellen besitzen kaum Vesikel und tragen keinen Mikrovillisaum. In den Oozyten der Ovarien von Königinnen und Arbeiterinnen wurden ebenfalls große Symbiontenmengen gefunden. Die Spermatheka der Königinnen und die Geschlechtsorgane der Männchen waren symbiontenfrei. Die Abwesenheit von Symbionten innerhalb dieser beiden Organe zeigt, dass eine Bakterieninfektion der weiblichen Tiere nicht durch die Männchen stattfindet, sondern wie schon in den phylogenetischen Untersuchungen postuliert, ein rein maternaler Übertragungsweg der Symbionten vorliegt. Die Detektion der Bakterien in Eiern und Larven der Ameisen mittels In situ-Hybridisierungen trugen zur Aufklärung des Weges der Endosymbionten während der Embryogenese bei. Während sich im abgelegten Ei ein Ring aus Symbionten bildete, kam es in den Larvenstadien 1 bis 3 zur Auswanderung der Bakterien in Meso- bzw. Ektoderm. Im größten untersuchten Larvenstadium 4, das kurz vor der Verpuppung stand, konnten die Symbionten ausschließlich in den Myzetozyten des Mitteldarmes detektiert werden. Die Behandlung der Ameisen mit Antibiotika ermöglichte es, symbiontenfreie Ameisen zu erzeugen, die über einen längeren Zeitraum weiterlebten, ohne ihre Symbionten zu regenerieren. Im Rahmen dieser Arbeit gelang es erstmals, die intrazellulären Bakterien intakt aus dem sie umgebenden Mitteldarmgewebe zu isolieren. Somit konnten gereinigte Symbionten für Kultivierungs- und Infektionsversuche verwendet werden. Diese Versuche die mit Hilfe von Bakteriennährmedien und Insektenzelllinien durchgeführt wurden, zeigten jedoch sehr deutlich, dass es nicht möglich ist, die Camponotus-Symbionten außerhalb ihrer Wirte zu kultivieren. / This thesis deals with the characterization of intracellular endosymbiotic bacteria in the midgut of carpenter ants (Camponotus spp.). Sequences of the 16S rDNA of the symbionts and the mitochondrial cytochrome oxidase subunit I (COI) were used for phylogenetic analyses, respectively. These investigations led to new insights concerning the transmission pathway and the phylogenetic classification of the Camponotusendosymbionts. The following results were obtained by extensive analysis of thirteen different Camponotus species. The intracellular bacteria of these species form a distinct lineage in the gamma-subclass of the Proteobacteria. Within the Camponotus symbionts three subclusters are apparent, in which the strains are more related to each other than to the members of the other subclusters. The taxa closest related to the antsymbionts are the symbiotic bacteria of the genus Wigglesworthia and Buchnera. The rrs genes of the Camponotusendosymbionts contain putative intervening sequences (IVS). Their 16S rDNA apparently is not located upstream of the 23S rDNA, and the 16S and 23Sgenes seem to be organized in different transcription units. This genetic characteristic was already described for the symbionts of the genus Buchnera. Similar to the endosymbionts, the phylogenetic relationship of the host ants could be arranged into three clusters with increasingly closer relationship. The direct comparison of the phylogenetic trees of the endosymbiotic bacteria and the ants revealed a nearly similar branching pattern. The exception is C. castaneus, which can not be related to any other species on the basis of the COI analysis. Nevertheless, both trees showed very significant congruence suggesting parallel evolution of symbiotic bacteria and host ant species. These phylogenetic investigations provided the justification for proposing a new taxon in the gamma-subclass of the Proteobacteria: "Candidatus Blochmannia spp". By light- and electronmicroscopical studies I investigated the mode of transmission of the endosymbionts and their location in adult individuals. These studies showed that the bacteria are localized in specialized cells, so-called mycetocytes. These cells are intercalated between the epithelial cells of the midgut. The mycetocytes lack vesicles and microvilli. Camponotusendosymbionts have not been detected in spermathecae of queens or in the testes of males, but they were found intracellularly in oocytes of queens and workers. This strongly indicates a maternal transmission of the bacteria. Using in situ hybridization with species specific probes, the endosymbiotic bacteria could be detected in eggs and larvae. With these experiments it was possible to study the spatial arrangements of the symbionts during embryogenesis. In the egg-stage the symbionts form a ball. In larval stages 1-3 a migration of bacteria into the meso- and ectoderm was observed. In larval stage 4 the symbionts were accumulated in the midgut epithelium, like in adult individuals. Symbionts could only be detected in the mycetocytes of the gut. Ants treated with antibiotics were free of symbionts, and could be maintained to a long time period (more than 12 weeks) without regenerating their bacteria. In these studies we were able to isolate the symbionts out of the midgut epithelial successfully. These isolated microorganisms were used for cultivation and infection experiments. Using different culture mediums and insect cells we showed, that it is impossible to cultivate the Camponotus symbionts outside their host organisms.
5

Timing of sensory preferences in \(Camponotus\) Ants / Zeitliche Anpassung sensorischer Präferenzen in \(Camponotus\) Ameisen

Lindenberg [verh. Schubert], Annekathrin January 2021 (has links) (PDF)
Ants belong to the most successful insects living on our planet earth. One criterion of their tremendous success is the division of labor among workers that can be related to age (age¬– or temporal polyethism) and/ or body size (size–related polymorphism). Young ants care for the queen and brood in the nest interior and switch to foraging tasks in the outside environment with ongoing age. This highly flexible interior–exterior transition probably allows the ant workers to properly match the colony needs and is one of the most impressive behaviors a single worker undergoes during its life. As environmental stimuli are changing with this transition, workers are required to perform a new behavioral repertoire. This requires significant adaptions in sensory and higher¬–order integration centers in the brain, like the mushroom bodies. Furthermore, foragers need proper time measuring mechanisms to cope with daily environmental changes and to adapt their own mode of life. Therefore, they possess a functional endogenous clock that generates rhythms with a period length of approximately 24 hours. The species–rich genus of Camponotus ants constitute a rewarding model to study how behavioral duties of division of labor were performed and modulated within the colony and how synaptic plasticity in the brain is processed, as they can divide their labor to both, age and body size, simultaneously. In my PhD thesis, I started to investigate the behavioral repertoire (like foraging and locomotor activity) of two sympatric Camponotus species, C. mus and C. rufipes workers under natural and under controlled conditions. Furthermore, I focused on the division of labor in C. rufipes workers and started to examine structural and ultrastructural changes of neuronal architectures in the brain that are accompanied by the interior–exterior transition of C. rufipes ants. In the first part of my thesis, I started to analyze the temporal organization of task allocation throughout the life of single C. rufipes workers. Constant video–tracking of individually labeled workers for up to 11 weeks, revealed an age–related division of labor of interior and exterior workers. After emergence, young individuals are tended to by older ones within the first 48 hours of their lives before they themselves start nurturing larvae and pupae. Around 52% switch to foraging duties at an age of 14–20 days. The workers that switched to foraging tasks are mainly media–sized workers and seem to be more specialized than nurses. Variations in proportion and the age of switching workers between and within different subcolonies indicate how highly flexible and plastic the age–related division of labor occurs in this ant species. Most of the observed workers were engaged in foraging tasks exclusively during nighttime. As the experiments were conducted in the laboratory, they are completely lacking environmental stimuli of the ants´ natural habitat. I therefore asked in a second study, how workers of the two closely related Camponotus species, C. rufipes and C. mus, adapt their daily activity patterns (foraging and locomotor activity) under natural (in Uruguay, South America) and controlled (in the laboratory) conditions to changing thermal conditions. Monitoring the foraging activity of both Camponotus species in a field experiment revealed, that C. mus workers are exclusively diurnal, whereas C. rufipes foragers are predominantly nocturnal. However, some nests showed an elevated daytime activity, which could be an adaption to seasonally cold night temperatures. To further investigate the impact of temperature and light on the differing foraging activity patterns in the field, workers of both Camponotus species were artificially exposed to different thermal regimes in the laboratory, simulating local winter and summer conditions. Here again, C. mus workers display solely diurnal locomotor activity, whereas workers of C. rufipes shifted their locomotor activity from diurnal under thermal winter conditions to nocturnal under thermal summer conditions. Hence, the combination of both, field work and laboratory studies, shows that daily activity is mostly shaped by thermal conditions and that temperature cycles are not just limiting foraging activity but can be used as zeitgeber to schedule the outside activities of the nests. Once an individual worker switches from indoor duties to exterior foraging tasks, it is confronted with an entirely new set of sensory information. To cope with changes of the environmental conditions and to facilitate the behavioral switch, workers need a highly flexible and plastic neuronal system. Hence, my thesis further focuses on the underlying neuronal adaptations of the visual system, including the optic lobes as the primary visual neuropil and the mushroom bodies as secondary visual brain neuropil, that are accompanied with the behavioral switch from nursing to foraging. The optic lobes as well as the mushroom bodies of light–deprived workers show an `experience–independent´ volume increase during the first two weeks of adulthood. An additional light exposure for 4 days induces an `experience–dependent´ decrease of synaptic complexes in the mushroom body collar, followed by an increase after extended light exposure for 14 days. I therefore conclude, that the plasticity of the central visual system represents important components for the optimal timing of the interior–exterior transitions and flexibility of the age–related division of labor. These remarkable structural changes of synaptic complexes suggest an active involvement of the mushroom body neuropil in the lifetime plasticity that promotes the interior–exterior transition of Camponotus rufipes ants. Beside these investigations of neuronal plasticity of synaptic complexes in the mushroom bodies on a structural level, I further started to examine mushroom body synaptic structures at the ultrastructural level. Until recently, the detection of synaptic components in projection neuron axonal boutons were below resolution using classical Transmission Electron Microscopy. Therefore, I started to implement Electron Tomography to increase the synaptic resolution to understand architectural changes in neuronal plasticity process. By acquiring double tilt series and consecutive computation of the acquired tilt information, I am now able to resolve individual clear–core and dense–core vesicles within the projection neuron cytoplasm of C. rufipes ants. I additionally was able to reveal single postsynaptic Kenyon cell dendritic spines (~62) that surround one individual projection neuron bouton. With this, I could reveal first insights into the complex neuronal architecture of single projection neuron boutons in the olfactory mushroom body lip region. The high resolution images of synaptic architectures at the ultrastructural level, received with Electron Tomography would promote the understanding of architectural changes in neuronal plasticity. In my PhD thesis, I demonstrate that the temporal organization within Camponotus colonies involves the perfect timing of different tasks. Temperature seems to be the most scheduling abiotic factors of foraging and locomotor activity. The ants do not only need to adapt their behavioral repertoire in accordance to the interior–exterior switch, also the parts in the peripheral and central that process visual information need to adapt to the new sensory environment. / Ameisen gehören zu den erfolgreichsten Insekten unserer Erde. Hauptverantwortlich für ihren enormen Erfolg ist die Arbeitsteilung der Arbeiterinnenkaste. Ameisenarbeiterinnen können sich ihre Aufgaben abhängig ihrer Körpergröße teilen (Größenpolymorphismus), indem unterschiedlich große Tiere verschiedenen Aufgaben in der Kolonie nachgehen. Zusätzlich kann die Arbeitsteilung aber auch altersbedingt sein (auch genannt Alters– oder zeitlicher Polyethismus): Junge Ameisen kümmern sich um die Königin und Brut innerhalb des Nestes, bevor sie mit zunehmendem Alter das Nest verlassen und zu Futtersammlerinnen (Furageuren) werden. Der extrem anpassungsfähige Wechsel von Innen¬– zu Außendiensttieren ist einer der erstaunlichsten Verhaltensweisen, die Arbeiterinnen an den Tag legen und ermöglicht es ihnen, den unterschiedlichen Bedürfnissen ihrer Kolonie nachzugehen. Der Übergang der Ammentätigkeit zum Furagieren ist mit beträchtlichen Veränderungen der sensorischen Umgebung der einzelnen Arbeiterinnen verbunden und erfordert eine Verhaltensanpassung an diese neuen Gegebenheiten. Wenn sich die Verhaltensweisen der Arbeiterinnen ändert, führt das zu Anpassungen der sensorischen und höheren Verschaltungszentren in bestimmten Gehirnarealen. Eines dieser sensorischen Verarbeitungszentren sind die Pilzkörper. Außerdem müssen Furageure in der Lage sein, tägliche Veränderungen ihrer Umwelt wahrzunehmen, um ihre Verhaltensweisen stets optimal an die sich ändernde Umwelt anzupassen. Dafür brauchen sie eine funktionierende innere Uhr, die rhythmisch mit einer Periodenlänge von ca. 24 Stunden läuft. Die artenreiche Gattung der Camponotus Ameisen ist ein geeigneter Organismus, um die Verhaltensweisen die mit der Arbeitsteilung der Arbeiterinnenkaste einhergehen, zu untersuchen, da sowohl der Größenpolymorphismus als auch der Alterspolyethismus zeitgleich in dieser Gattung auftauchen können. Dadurch eignen sich Camponotus Ameisen auch hervorragend, um strukturelle Veränderungen synaptischer Komplexe im Gehirn, die sich durch die Arbeitsteilung ändern können, zu untersuchen. In meiner Doktorarbeit habe ich damit angefangen, die Verteilung von bestimmten Aufgaben (Ammen und Furageure) von C. rufipes Arbeiterinnen zu untersuchen. Mithilfe von Videoaufnahmen über elf Wochen, konnte ich sowohl eine altersabhängige, als auch eine größenabhängige Arbeitsteilung zwischen Ammen und Furageuren für diese Art zeigen. Frisch geschlüpfte Tiere wurden innerhalb der ersten 48 Stunden von anderen Ammen umsorgt, bevor sie selbst zu Ammen wurden und Aufgaben wie Brutpflege übernommen haben. Nach rund 14–20 Tagen sind 53% der Ammen zu Furageuren gewechselt. Zusätzlich zu der altersabhängigen Arbeitsteilung konnte ich zeigen, dass die Körpergröße der Ammen deutlich breiter gestreut ist als die der Furageure, was in einer höheren Spezialisierung der Furageure resultiert. Proportionale Unterschiede des Alters und der Größe der Tiere, die diesen Wechsel vollzogen haben zeigen, wie hoch flexibel und anpassungsfähig die Arbeitsteilung innerhalb der Arbeiterinnenkaste sein kann. Die meisten der beobachteten Furageure waren außerdem fast ausschließlich nachtaktiv. Da ich diese Experimente im Labor durchgeführt habe, fehlt es komplett an der natürlichen sensorischen Umgebung der Tiere. In dem zweiten Teil meiner Doktorarbeit habe ich mich damit beschäftigt, ob sich tägliche Aktivitätsmuster (Furagier– und Bewegungsaktivität) von Arbeiterinnen zweier nah verwandter Camponotus Arten (C. rufipes und C. mus) unter natürlichen Bedingungen (in Uruguay, Südamerika) und unter kontrollierten Bedingungen (im Labor), in Abhängigkeit von den abiotischen Faktoren Licht und Temperatur, verändern können. Meine Ergebnisse zeigen, dass C. mus Arbeiterinnen unter natürlichen Bedingungen strikt tagaktiv sind, wohingegen C. rufipes Arbeiterinnen vornehmlich nachts furagierten. Ein paar C. rufipes Nester zeigten allerdings eine erhöhte Furagieraktivität tagsüber, was auf die saisonal kalten Nächte zurückzuführen sein könnte. Um den Einfluss von Licht und Temperatur, der sich auf die Furagieraktivität im Feld gezeigt hat, genauer untersuchen zu können, wurden Arbeiterinnen beider Camponotus Arten verschiedenen Licht– und Temperaturbedingungen im Labor ausgesetzt. Auch hier zeigten Arbeiterinnen der Gattung C. mus eine strikt tagaktive Bewegungsaktivität, wohingegen C. rufipes Arbeiterinnen von tagaktiv unter Winter Temperaturbedingungen zu nachaktiv unter Sommer Temperaturbedingungen wechselten. Die Kombination aus den Ergebnissen der Feld– und Laborstudien zeigen deutlich, dass die generelle Aktivität der beiden Arten hauptsächlich durch Licht und Temperatur beeinflusst wird und dass Temperaturzyklen nicht nur ein limitierender Faktor der Furagieraktivität sind, sondern auch als Zeitgeber dienen können um Aktivität generell zu regulieren. Wenn der Übergang von Innen– zu Außendiensttieren stattgefunden hat, ändert sich die komplette sensorische Umgebung der Furageure. Um diese Veränderungen verarbeiten zu können, brauchen Arbeiterinnen ein hoch anpassungsfähiges und flexibles neuronales System. Daher beschäftigte ich mich in meiner Doktorarbeit außerdem mit den zugrundeliegenden neuronalen Anpassungen der visuellen Verarbeitungsregionen im Gehirn, wie die optischen Loben und die Pilzkörper, die mit dem Wechsel von Ammen zu Furageuren einhergehen. Ich konnte zeigen, dass die optischen Loben und die Pilzkörper von im Dunkeln gehaltenen Arbeiterinnen eine `Erfahrungs–unabhängige´ Volumenszunahme innerhalb der ersten zwei Wochen nach dem Schlupf zeigen. Eine folgende Lichtexposition von vier Tagen führte zu einer `Erfahrungs–abhängigen´ Abnahme der synaptischen Strukturen im Pilzkörper, die allerdings durch eine länger anhaltende Lichtexposition von 14 Tagen wieder anstieg. Diese Plastizität des zentralen visuellen Nervensystems repräsentiert eine wichtige Komponente für die optimale zeitliche Anpassung des Wechsels von Ammen zu Furageuren und die enorme Flexibilität der altersabhängigen Arbeitsteilung. Außerdem scheinen die Pilzkörper durch diese beeindruckenden strukturellen Veränderungen der synaptischen Komplexe aktiv an dieser neuronalen Plastizität beteiligt zu sein und daher den Übergang von Innen– zu Außendiensttieren in C. rufipes Ameisen zu unterstützen. Neben meinen Untersuchungen zur neuronalen Plastizität synaptischer Komplexe im Pilzkörper auf der strukturellen Ebene, habe ich damit begonnen, diese Plastizität der neuronalen Komplexe auch auf Ultrastruktur Ebene zu untersuchen. Durch die zu geringe Auflösungsmöglichkeit der klassischen Transmissions Elektronenmikroskopie, konnten bisher einzelne synaptischer Komponenten in den axonalen Endigungen der Projektionsneurone nicht detektiert werden. Deswegen habe ich damit angefangen, die Methode der Elektronen Tomographie zu etablieren um die Auflösung synaptischer Komplexe zu verbessern. Mit dieser höheren Auflösung ist es möglich, bauliche Veränderungen der synaptischen Komplexe in Plastizitätsprozessen besser zu verstehen. Mit der Durchführung von `double tilt´ Serien und der anschließenden Verarbeitung der erhaltenen Bildinformation, war es mir möglich, einzelne `clear–core´ und `dense–core´ Vesikel innerhalb des Zytoplasmas der Projektionsneurone von C. rufipes Ameisen detektieren. Außerdem konnte ich mit dieser Methode einzelne postsynaptische dendritische Dornen der Kenyon Zellen (~62) identifizieren, die ein einzelnes Endknöpfchen eines Projektionsneurons umgeben. In diesem Teil meiner Arbeit konnte ich erste Einblicke in die komplexe neuronale Bauweise einzelner Endigungen der Projektionsneurone in der olfaktorischen Region der Pilzkörper zeigen. Die hochauflösenden Bilder synaptischer Komplexe auf dem Ultrastruktur Level, die man mit der Elektronen Tomographie erzielen kann, bringen das Verständnis baulicher Veränderungen innerhalb der neuronales Plastizität voran. In meiner Doktorarbeit konnte ich zeigen, dass die zeitliche Organisation verschiedener Aufgaben innerhalb der Kolonien von Camponotus Ameisen einer perfekten Zeitplanung bedarf. Hier scheinen die abiotischen Faktoren Temperatur und Licht den größten Einfluss auf die Furagieraktivität und die generelle Aktivität zu haben. Die Ameisenarbeiterinnen müssen nicht nur ihre Verhaltensweise nach dem Übergang von Ammen zu Furageuren anpassen, es müssen sich auch die Teile des Gehirns, die für die Verarbeitung visueller Reize zuständig sind, dieser neuen sensorischen Umgebung anpassen.
6

Biomechanik von Insekten-Pflanzen-Interaktionen bei Nepenthes-Kannenpflanzen / Biomechanics of insect-plant interactions in Nepenthes pitcher plants

Bohn, Holger Florian January 2007 (has links) (PDF)
Interaktionen zwischen Insekten und Pflanzen können auf chemischen oder mechanischen Faktoren beruhen. Mechanische Faktoren spielen eine besonders wichtige Rolle bei den Fallen karnivorer Pflanzen. Ziel dieser Arbeit war es, die Rolle mechanischer Faktoren in der Interaktion zwischen der Kannenpflanze Nepenthes bicalcarata und der Ameise Camponotus schmitzi aufzuklären, bei der Ameisen Gegenanpassungen zu spezialisierten pflanzlichen Fangstrukturen entwickelt haben. Im Rahmen meiner Arbeit habe ich mich mit den Fragen beschäftigt, 1) welche Kannenstrukturen und welche Mechanismen für den Fang von Arthropoden wichtig sind und 2) welche speziellen Anpassungen C. schmitzi-Ameisen für das Leben auf ihrer karnivoren Wirtspflanze besitzen. Bisher wurde angenommen, dass Nepenthes-Kannen Tiere mit Hilfe von rutschigen Wachskristallschichten fangen. Ich konnte zeigen, dass ein weiterer, bisher unbekannter Fangmechanismus existiert, welcher auf speziellen Oberflächeneigenschaften des Kannenrandes (Peristom) und "Insekten-Aquaplaning" basiert. Das Peristom besitzt eine regelmäßige Mikrostruktur, welche dafür sorgt, dass die Oberfläche vollständig mit Wasser benetzbar ist, so dass sie bei feuchter Witterung von homogenen Flüssigkeitsfilmen überzogen ist. Auf dem trockenen Peristom können Ameisen ohne Schwierigkeiten laufen und Nektar von den am inneren Peristomrand gelegenen Nektarien ernten. Wird die Oberfläche aber beispielsweise durch Regen nass, rutschen die meisten Tiere ab und stürzen in die Kanne. Messungen der Reibungskräfte von Weberameisen (Oecophylla smaragdina) auf dem Peristom von N. bicalcarata zeigten, dass Flüssigkeitsfilme auf der Oberfläche die Anhaftung der Haftorgane (Arolien) verhindern, und dass die Mikrostruktur des Peristoms auch den Einsatz der Krallen unterbindet. Versuche an Nepenthes alata zeigten darüber hinaus, dass dieser Fangmechanismus des Peristoms auch für Nepenthes-Arten mit wachsbereifter Kanneninnenwand essentiell, und die Wachsschicht eher für die Retention gefangener Tiere wichtig ist. Zur Analyse der ökologischen Auswirkungen des "Aquaplaning"-Fangmechanismus habe ich die Peristomfeuchte von Nepenthes rafflesiana var. typica-Kannen zeitgleich mit meteorologischen Daten im Feld kontinuierlich aufgezeichnet und mit Experimenten zur Beurteilung der Fangeffizienz der Kannen kombiniert. Die Ergebnisse dieser Versuche zeigen, dass die Kannen abhängig vom Befeuchtungsgrad des Peristoms zeitweise sehr effiziente Fallen mit Fangraten von 80% sein können, während sie zu anderen Zeiten vollkommen ineffizient sind. Die Variation der Peristomfeuchte wird durch Regen, Kondensation und von den Peristomnektarien sezerniertem Nektar verursacht. Es ist zu vermuten, dass die nur zeitweise und unvorhersehbare Aktivierung der Nepenthes-Kannenfallen durch Nässe der Evolution von Vermeidungsstrategien bei Beutetieren entgegenwirkt. Im Rahmen der Untersuchungen, welche mechanischen Anpassungen C. schmitzi-Ameisen für das Leben auf N. bicalcarata besitzen habe ich mich auf die Fragen konzentriert, wie es den Ameisen gelingt den Peristom-Fangmechanismus zu umgehen und welche Anpassungen sie besitzen um in der Kannenflüssigkeit tauchend und schwimmend nach Nahrung zu suchen. Im Gegensatz zu generalistischen Arten stürzen C. schmitzi-Ameisen auf dem nassen Peristom nicht ab. Durch selektive Manipulation der tarsalen Haftstrukturen konnte ich demonstrieren, dass die Arolien für die Peristomlauffähigkeit der C. schmitzi-Ameisen eine wesentliche Rolle spielen. Für das Furagieren in der Kannenflüssigkeit verfügen C. schmitzi-Ameisen über ein sich wiederholendes, stereotypes Verhaltensmuster, welches aus einer Unterwasserlauf- und einer Oberflächenschwimmphase besteht. Meine Untersuchungen dieses Verhaltensmusters zeigten, dass die Ameisen am Ende der Unterwasserlaufphase mit Hilfe ihres stets vorhandenen Auftriebs zur Flüssigkeitsoberfläche aufsteigen. Dabei taucht ein Teil ihres Hinterleibs aus der Kannenflüssigkeit auf, was den Ameisen die Sauerstoffaufnahme aus der Luft ermöglicht. Nach dem Auftauchen schwimmen C. schmitzi-Ameisen mittels schneller Beinbewegungen an der Oberfläche der Kannenflüssigkeit. Dabei ähnelt die Bewegungskoordination ihrer Beine dem bei Ameisen für die Fortbewegung an Land typischen Dreifußgang. Ein Vergleich der Kinematik von schwimmenden und laufenden C. schmitzi-Ameisen hat gezeigt, dass schwimmende Ameisen ihre Beine in der Schlagphase mit einer höheren Winkelgeschwindigkeit als in der Rückholphase bewegen, während dies bei den laufenden Tieren genau umgekehrt ist. Ferner strecken schwimmende Ameisen ihre Beine während der Schlagphase weiter aus als in der Rückholphase, wohingegen laufende Ameisen in beiden Bewegungsphasen vergleichbare Beinradien aufweisen. Dies lässt den Schluss zu, dass die Schwimmkinematik der C. schmitzi-Ameisen eine abgewandelte Form ihrer Laufkinematik darstellt, welche für die Erzeugung von Vortrieb im Wasser optimiert wurde. / Insect-plant interactions based on either chemical or mechanical factors, play a key role in nature. Mechanical factors are of particular importance for the animal traps of carnivorous plants. The aim of this study is to clarify the role of mechanical factors in the interaction between the pitcher plant Nepenthes bicalcarata and its ant partner, Camponotus schmitzi which has evolved counter adaptations against the specialised capture structures of the plant. This study investigates two questions, firstly, which of the pitchers' structures and which mechanisms are important for the capture of arthropods and secondly, what are the special adaptations that enable the C. schmitzi ants to live on their carnivorous host plant. It has so far been suggested, that Nepenthes pitchers capture prey by means of slippery epicuticular wax crystals. I was however able to show, that another, yet unknown capture mechanism exists. It is based on the special surface properties of the pitcher rim (peristome) and on the phenomenon of insect "aquaplaning". The peristome is characterized by a regular microstructure with radial ridges of smooth overlapping epidermal cells, which form a series of steps toward the pitcher interior. This surface is completely wettable by water, so that under humid weather conditions it is covered by homogenous liquid films. If the peristome is dry, ants can run freely on it and harvest nectar from the nectaries at the inner margin of the peristome. As soon as the peristome surface is wetted, for example by rain, it becomes extremely slippery for insects, so that most of the ant visitors are trapped. By measuring the friction forces of weaver ants (Oecophylla smaragdina) on the peristome of N. bicalcarata, I was able to show that the liquid films on the surface disrupt attachment for the soft adhesive pads (arolia) and that the surface topography impedes the use of claws. Experiments on Nepenthes alata demonstrated that the trapping mechanism of the peristome is also essential in Nepenthes species with waxy inner pitcher walls, indicating that the waxy surfaces are more important for the retention rather than the capture of prey. I investigated the ecological implications of the "aquaplaning" capture mechanism in Nepenthes rafflesiana var. typica by combining meteorological data and continuous field measurements of peristome wetness with experimental assessments of the pitchers’ capture efficiency. My results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but are completely ineffective at other times. These dramatic changes are due to the wetting conditions of the peristome. Variation of peristome wetness and thus the variation of capture efficiency is caused by rain, condensation, and nectar secreted from the peristome nectaries. I propose that the intermittent and unpredictable activation of Nepenthes pitcher traps prevents the evolution of avoidance strategies in prey animals. In the second part of my study I investigated the mechanical adaptations that the C. schmitzi possess in order to live on N. bicalcarata. I focused on two principal questions, how are the ants able to circumvent the peristome capture mechanism and what adaptations do they need in order to swim and dive in the digestive fluid. In contrast to generalist ants, C. schmitzi ants are capable of running on the wet peristome without difficulties. Through selective manipulation of tarsal attachment structures I was able to demonstrate, that the arolia are essential for the ants’ capability to run on the wet peristome. Whilst foraging in the pitcher fluid C. schmitzi ants show a repetitive stereotyped behaviour pattern, consisting of an underwater running and surface swimming phase. My analysis of this behaviour pattern showed that at the end of the underwater running phase the ants advance to the fluid surface with the aid of buoyancy. When reaching the surface film parts of the ants’ gaster and head emerge. I was able to show that while foraging in the pitcher fluid the emerging of the gaster is crucial for the respiration of the ants. After emersion the ants swim at the surface of the pitcher fluid using fast leg movements. Hence the leg coordination is similar to a tripod gait which is typical for their locomotion on land. A comparison between the kinematics of swimming and running C. schmitzi ants showed that whilst swimming, the angular velocity of their legs is higher in the stroke than in the recovery, whereas the opposite is true whilst running. Furthermore the swimming ants stretch their legs further in the stroke than in the recovery whereas the leg radius of running ants does not vary much throughout a step. It can be concluded that the swimming kinematics of C. schmitzi ants derives from the kinematics of their running and has been optimized for generating thrust in water.

Page generated in 0.0386 seconds