• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simple Time-Power Functions for Rainwater Infiltration and Runoff

Dixon, R. M., Simanton, J. R., Lane, L. J. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / The equations of Darcy, Kostiakov, Ostashev, Philip, and four modified Philip equations were evaluated for use in predicting and controlling rainwater infiltration and rainfall excess in crop and rangelands. These eight equations were least- square fitted to data from ring, border-irrigation, closed-top, and sprinkling infiltrometers. Kostiakov's equation satisfied the evaluation criteria better than the other seven equations. The parameters of Kostiakov's equation were physically interpreted by relating their magnitudes to some physical, biological, and hydraulic characteristics of the infiltration system. These characteristics included several infiltration abatement and augmentation processes and factors that are controlled at the soil surface by land management practices. The eight equations were also fitted to rainfall data to permit calculating runoff from small surface areas about the size of a typical crop plant. Comparison of the regression curves for infiltration and rainfall suggested that land management practices that appropriately alter the soil surface will permit wide-range control of infiltration, runoff, and erosion; and thereby achieve conservation and more efficient use of soil and water resources for crop production. The most important soil surface conditions affecting infiltration were microroughness, macroporosity, plant litter, and effective surface head.
2

A Stochastic Analysis of Flows on Rillitto Creek

Baran, N. E., Kisiel, C. C., Duckstein, L. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / In order to construct a simulation model for ephemeral streamflow and to examine in depth the problem of the worth of data for that model, measurements of the ephemeral streamflow of Rillitto creek, Tucson, were analyzed for the period 1933-1965. The simulation model was based on several hypotheses: (1) flow durations and their succeeding dry periods (time when no flow is present) are independent; (2) the distribution of the lengths of the dry periods and flows is stationary over a certain period of the year (summer); (3) stationary probability distributions for flow durations and for dry period lengths can be derived. A related problem was how to derive a simulation model for the total amount of flow (in acre-ft) within 1 flow period. Three variables were considered: flow duration (minutes), peak intensity of flow (cu ft/sec) and antecedent dry period-minutes (ADP). Because the assumption of variance constancy does not hold, a multiplicative regression model was used. Using an analysis of variance, which is described in detail, the worth of the 3 kinds of data were examined in relation to total flow. It was concluded that there are at least 5 times during the year when the flow intervals differ significantly, and the ADP is not important in determining flow volume because of the poison flow arrival rate in summer. Events occur at random and are not clustered as in summer, indicating that channel moisture does not differ much between flow events.
3

An Analysis of Yearly Differences in Snowpack Inventory-Prediction Relationships

Ffolliott, Peter F., Thorud, David B., Enz, Richard W. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Inventory-prediction relationships between snowpack conditions and forest attributes may be useful in estimating water yields derived from snow, but such relationships are developed usually from source data collected over a short time period. Analyses of long-term data suggest inventory-prediction relationships developed from limited data may have more general application, however. Available records from 18 snow courses in the ponderosa pine type in Arizona provided source data in this study, which was designed to empirically analyze inventory-prediction relationships developed from long-term snow survey records. The primary hypothesis tested and evaluated by statistically analyzing the family of regression equations representing a snow course, was that, given a precipitation input, the distribution of snowpack water equivalent at peak seasonal accumulation is determined by the spatial arrangement of the forest cover, e.g. basal area. Generally 12 of the 18 snow courses evaluated appeared to support the hypothesis, three courses did not, and three courses were considered inconclusive.
4

Progress in Developing Forest Management Guidelines for Increasing Snowpack Water Yields

Thorud, David B., Ffolliott, Peter F. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / Snowmelt is a major source of runoff in Arizona for both reservoir systems and groundwater recharge. Because much of the Arizona snowmelt runoff occurs in ponderosa pine forests, it follows that appropriate forest management methods may enhance snowmelt water yield by manipulating tree spacing or overstory density. This paper attempts to establish guidelines for evaluating such forest management practices. Physiographic and climatic factors also affect runoff quantity, and it is conceivable that 2 sites of identical vegetation composition, but different in some combination of these factors might yield quite different amounts of runoff in response to some management practice. A pert network is presented illustrating the investigative framework for such a research effort. The major study activities of the framework are the identifying developing preliminary evaluations and preparing a comprehensive report. Three inventory evaluations to attempt identification of pertinent populations are currently being conducted and are described.

Page generated in 0.0837 seconds