• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biology Facilitated by Heme Proteins as Seen in Cimex Nitrophorin and Ecdysone Inducible Protein 75

Badgandi, Hemant B. January 2009 (has links)
This dissertation is a study in how heme facilitates biology using two heme proteins as examples. I write about my mechanistic studies on Cimex nitrophorin and preliminary studies on Ecdysone inducible protein 75, respectively. Nitrophorins are salivary heme proteins used by bloodfeeding insects to deliver NO to the victim, leading to vasodilation and antihemostasis. The bedbug nitrophorin cNP, a thiolate heme protein accomplishes this via an unusual heme-assisted S-nitrosation reaction, requiring proximal ligand cleavage. This dissertation explores this mechanism through mutational, crystallographic and transient kinetic approaches. I present the detailed investigation of the two NO binding events, one at the heme and the other at the proximal cysteine. The heme nitrosyl shows marked pH dependence arising out of the apparent protonation of the proximal cysteine ligand, a feature crucial to cNP function. The structures and spectroscopy of cNP mutant proteins reveal the SNO modification to be regulatory in nature. Laser flash photolysis measurements and the structures of mutant proteins reveal the negative influence of steric hindrance on SNO stability.Studies of insect embryogenesis and metamorphosis reveal the regulatory role of the hormone ecdysone via its target, the ecdysone receptor. Ecdysone triggers expression of several nuclear receptors in a time and tissue dependant fashion, which in turn carry out gene regulation. Ecdysone inducible protein 75 (E75), a nuclear receptor and an early ecdysone responsive gene product, regulates a subset of the developmental activities attributed to ecdysone. We are investigating E75 from Aedes aegypti to uncover its role in ecdysone signaling in mosquitoes. I have expressed and partially purified the full length protein using the baculovirus driven expression in SF9 cells, and purified to homogeneity the heme binding domain resolubilized from inclusion bodies obtained by expression in E. coli. Preliminary characterization of the proteins using UV-visible spectroscopy indicates that E75 has a b type heme with a low spin six-coordinate ferric iron. In the E75 heme binding domain, the heme exhibits an unstable ferrous state and only binds NO and CO at high non-physiological levels. These data place into doubt the suggested roles for E75 as a gas regulated transcription regulator.
2

A Chemical-proteomic Platform to Monitor Cysteine Sensitivity to Transnitrosation

Zhou, Yani January 2016 (has links)
Thesis advisor: Eranthie Weerapana / A chemical-proteomic platform to monitor cysteine sensitivity to transnitrosation Yani Zhou Dissertation advisor: Dr. Eranthie Weerapana Abstract S-nitrosation has emerged as a ubiquitous endogenous protein posttranslational modification that significantly impacts cellular protein function through a variety of mechanisms. Despite the advent of chemical and proteomic methods to study S-nitrosation, the subset of cellular cysteine residues that show uniquely high reactivity to endogenous transnitrosation donors is poorly characterized. To further these existing global studies, a cysteine-reactivity profiling strategy was applied herein to rank ~600 cysteine residues by sensitivity to S-nitrosoglutathione. These proteomic studies revealed several previously uncharacterized sites of S-nitrosation, including Cys58 in HADH2. Further characterization revealed that HADH2 catalytic activity is allosterically regulated by S-nitrosation, and this modification occurs in cells at (patho)physiological levels of nitrosative stress. Functional role of Cys58 and its regulation by S-nitrosation facilitated the identification of RB-21-CA as a potential covalent Cys58 inhibitor. Global analysis of GSNO, S-nitroso-Coenzyme A and Thioredoxin-C73-SNO transnitrosation identified 756 cysteines with different sensitivity to each of three SNO donors. Systematic evaluation on transnitrosation selectivity revealed that specific interaction of transnitrosation donor with its protein target is a key component governing the selective transnitrosation of a specific cysteine residue. Together, these studies illustrated the potential of cysteine-reactivity profiling strategy for evaluating the substrate specificity of transnitrosation donors and enable the identification of previously uncharacterized, functionally relevant sites of S-nitrosation. Another cysteine oxoform, S-glutathionylation, is the disulfide formation of a protein cysteine residue with glutathione. Although glucose starvation is known to induce redox-disturbance, global and individual protein S-glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. By using a clickable glutathione approach, which forms clickable glutathione by the use of a mutant of glutathione synthetase, we found that protein S-glutathionylation is readily induced in response to glucose starvation when mitochondrial reactive oxygen species are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Application of a proteomic mass spectrometry platform identified over 1,300 S-glutathionylated. Confirmation of S-glutathionylation for selected proteins by in gel analysis further validated the mass spectrometry results, and highlights the dynamic change of S-glutathionylation on an individual protein level. In order to expand on the understanding of the functional role of the cysteine residues in biological systems, we evaluated a panel of 1,3,5-triazine- and 4-aminopiperidine-based cysteine-reactive small-molecules on two proteins, apoptosis signal-regulating kinase 1 (ASK1) and peroxiredoxin 1 (Prdx1), between which a intermolecular disulfide forms and results in the activation of mitogen-activated protein kinase pathway. In-gel fluorescence revealed that RB-11-CA and SMC-1, both of which contain an n-octyl group as a diversity element, showed greatest selectivity and potency to ASK1 and Prdx1, respectively. Further mass spectrometry analysis identified cysteine 225 of ASK1 and cysteine 173 of Prdx1 are the sites of covalent probe modification. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Structural Studies of Thioredoxin S-nitrosation and Detection of Protein S-nitrosothiols by Phosphine Derivatization

The, Juliana January 2013 (has links)
S-nitrosylation (or S-nitrosation) has emerged as an important pathway of non-classical nitric oxide signaling. This post-translational modification involves the transfer of a nitroso group onto a cysteine residue and has been shown to regulate protein function. However, very little is known about the mechanism and structure-dependent factors of the modification. Understanding of S-nitrosothiol chemistry has lagged behind that for the classical nitric oxide signaling pathway due to challenges and limitations of current detection methods of S-nitrosothiols. The S-N bond is typically labile and indirect detection by traditional biotin switch method has low sensitivity and is prone to false positives. In this work, I have explored phosphine derivatization as a new direct approach to labeling protein S-nitrosothiols. Syntheses of aza-ylide derivatives of small organic S-nitrosothiols were successful and the termolecularity of the reaction was overcome by using a bisphosphine. Similarly, S-nitrosated cysteines of thioredoxin were successfully derivatized with the phosphine TCEP and identified by tandem mass spectrometry of the digested protein. Surprisingly, derivatization of S-nitrosoglutathione was found to be unsuccessful and ¹⁸O-labeling of the reaction indicated hydrolysis of the aza-ylide product. We hypothesize that solvent effects are the source of this discrepancy. In addition, x-ray crystallography studies were undertaken to investigate structural rearrangement of a thioredoxin helix to expose residue Cys 62 to S-nitrosation. A new structure of thioredoxin Q63A/C69S/C73S mutant was found to exhibit a highly dynamic N-terminal loop surrounding the pocket of Cys 62 which could have an effect on S-nitrosation of this residue.
4

Inflammation et stress oxydant dans l'athérosclérose : rôle dans les réponses vasculaires des S-nitrosothiols / Inflammation and oxidative stress in atherosclerosis : role of S-nitrosothiols in the vascular responses

Belcastro, Eugenia 03 November 2016 (has links)
L'athérosclérose est une maladie chronique à évolution lente caractérisée par la formation de plaques d'athérome, consistant en l’accumulation de lipoprotéines de basse densité (LDL), de leucocytes, de cellules spumeuses, la migration des cellules musculaires lisses (CML) et l’altération des cellules endotheliales (ECs). Ces phénomènes conduisent à la formation d'un noyau nécrotique incluant des régions calcifiées. La genèse de l'athérosclérose et de l’instabilité de la plaque d’athérome sont le résultat d'une synergie entre inflammation et stress oxydant. Les données actuelles identifient plusieurs populations de macrophages dans la plaque d’athérome présentant différents phénotypes en lien avec l’inflammation (pro-inflammatoire: M1, anti-inflammatoire: M2) ou avec des modifications redox de l’environnement (Mox). Stress oxydant et inflammation sont liés et jouent un rôle important dans (i) la dysfonction endothéliale induisant une diminution de la biodisponibilité du monoxyde d’azote (NO), (ii) l'oxydation des LDL, (iii) le remodelage de la lésion (régulation de protéases et d’antiprotéases) et (iv) la prolifération des CML. Les CML sont le deuxième type cellulaire le plus abondant dans la lésion athérosclérotique après les macrophages, leur hyperprolifération est la conséquence d’une dédifférenciation cellulaire d’un phénotype contractile à sécrétoire, augmentant leur capacité proliférative et migratoire. Les donneurs de NO, comme les S-nitrosothiols, connus également pour protéger contre le stress oxydant grâce essentiellement à la S-nitrosation, peuvent contrer la carence en NO. Parmi eux, le S- nitrosoglutathion (GSNO), forme physiologique de stockage de NO dans les tissus, spécifiquement metabolisé par la gamma-glutamyl transférase (GGT) peut être envisagé. La corrélation entre l’augmentation des concentrations sériques de GGT et les facteurs de risque cardiovasculaire a récemment été démontrée. En particulier, seule la b-GGT s'accumule dans les plaques d'athérome, et concorde avec l’apparition d'autres marqueurs histologiques de vulnérabilité de la plaque. Étant donné que, les macrophages et les CML sont les principaux types cellulaires retrouvés dans les lésions athérosclérotiques et semblaient être colocalisés avec la GGT, l'attention de ce travail de thèse a été centrée sur la compréhension de la provenance de la GGT et son rôle dans le métabolisme du GSNO au sein de la plaque d’athérome. Une première partie de ce manuscrit vise à identifier l'origine de la GGT accumulée dans la plaque d’athérome, et à élucider entre le stimulus inflammatoire et oxydant, qui est responsable de l'accumulation de GGT dans la plaque d'athérome. La deuxième partie a été consacrée à la restauration de la biodisponibilité de NO dans les CML en condition de stress oxydant avec un intérêt particulier porté sur l'identification des protéines S-nitrosés / Atherosclerosis is a slowly progressing chronic disease characterized by the formation of atherosclerotic plaques consisting of accumulated low density lipoprotein (LDL), leukocytes, foam cells, migrated smooth muscle cells (SMCs) and altered endothelial cells (ECs), leading to the formation of necrotic cores with calcified regions. Atherosclerosis genesis and subsequent instability of atherosclerotic plaques result from a synergy between inflammation and oxidative stress. Current data identified several macrophage populations within the atherosclerotic plaque showing different inflammatory phenotypes (pro-inflammatory: M1, anti-inflammatory: M2) or functions in response to redox changes in the environment (Mox). The oxidative stress linked to inflammation plays an important role in (i) endothelial dysfunction, with reduced nitric oxide (NO) bioavailability, (ii) LDL oxidation, (iii) lesion remodeling (regulation of proteases and antiproteases) and (iv) SMCs proliferation. Indeed, SMCs are the second more abundant cell type, after macrophages, in the atherosclerotic lesion because their dedifferentiation from contractile to secreting phenotype increased their proliferation and migration capacity. NO donors, like S-nitrosothiols, also known to protect from oxidative stress by S-nitrosation, could counteract this NO deficiency. Among them, the S-nitrosoglutathione (GSNO), a physiological storage form of NO in tissues, specifically catabolized by the gamma-glutamyltransferase (GGT) is considered. Recently, it has been shown that the increased serum level of GGT is an independent risk factor for cardiovascular mortality related to atherosclerotic disease. In particular, only the big fraction (b-GGT) has been detected inside human atherosclerotic plaques associated to CD68+ macrophage-derived foam cells. As macrophages and SMCs are the main cell types found in atherosclerotic lesion and seemed to be colocalized with GGT, the attention of this thesis work was focused on the understanding of GGT provenance and its role in the GSNO metabolism within the atherosclerotic plaque. A first part of the thesis was to identify the origin of GGT accumulating inside atherosclerotic plaques, and to decipher between inflammation and oxidative stress stimuli, which one is responsible of GGT accumulation in atherosclerotic plaques. The second part was dedicated to the restoration of NO bioavailability within SMCs under oxidative stress with a focus on the identification of S-nitrosated proteins
5

Importance de la S-nitrosation des récepteurs cérébrovasculaires de l’angiotensine II / Importance of S-nitrosation of cerebrovascular angiotensin II receptors

Bouressam, Marie Lynda 04 July 2018 (has links)
Les accidents vasculaires cérébraux sont la deuxième cause de mortalité dans le monde, le développement de nouvelles thérapeutiques est donc urgent. Deux acteurs jouent un rôle majeur dans la régulation de la circulation cérébrale : le monoxyde d’azote (NO) et le système rénine angiotensine (SRA). Le chapitre 1 de ce manuscrit s’intéresse tout d’abord au NO, son rôle physiologique et ses voies de signalisation. Nous présentons les donneurs de NO disponibles sur le marché ainsi que ceux en développement. La bucillamine dinitrosée, développée dans notre laboratoire, fait l’objet d’une évaluation in vitro et in vivo. La deuxième partie de l’introduction s’intéresse au SRA, en rappelant son rôle prépondérant dans le maintien de la pression artérielle et de la régulation cérébrovasculaire. Nous présentons les récepteurs de l’angiotensine II (AngII), AT1 et AT2, responsables respectivement d’une vasoconstriction et d’une vasodilatation des artères cérébrales. Enfin la dernière partie présente la régulation des récepteurs de l’AngII par le NO, en particulier via la S-nitrosation du récepteur, la liaison d’un groupement NO sur une fonction thiol d’un résidu cystéine. Nous présentons les travaux de Leclerc qui montrent que l’exposition de cellules surexprimant le récepteur AT1 à un donneur de NO entraine une diminution d’affinité de l’AngII pour AT1 (Leclerc et al., 2006). Le chapitre 2 est consacré aux études expérimentales. L’objectif des travaux présentés dans cette thèse est d’étudier l’importance de la S-nitrosation des récepteurs de l’AngII au niveau cérébrovasculaire. Tout d’abord nous abordons la problématique actuelle concernant l’aspécificité des anticorps anti-AT1. Nous montrons que le nouvel anticorps monoclonal anti-AT1, censé être plus spécifique, ne reconnaît pas AT1 en western blot et en immunofluorescence, rendant donc son utilisation impossible. Nous faisons ensuite la démonstration pharmacologique des effets de la S-nitrosation sur les récepteurs de l’AngII. Nous montrons que l’exposition à un donneur de NO (S-nitrosoglutathion ou nitroprussiate de sodium) abolit spécifiquement la vasoconstriction médiée par AT1 comparé à d’autres vasoconstricteurs partageant ou non sa voie de signalisation. De plus cette exposition abolit aussi le tonus myogénique AT1-dépendant indépendant de la stimulation par l’AngII suggérant que l’altération survient sur le récepteur lui-même. Nous montrons par ailleurs que cet effet (i) ne dépend pas du NO endogène, (ii) se fait par une S-nitrosation plutôt que par la voie de la GMPc/GCs. Enfin nous étudions l’internalisation du récepteur par cytométrie en flux, sur un modèle hétérologue d’expression AT1. Nos résultats montrent que le GSNO ne modifie pas la localisation d’AT1 à la membrane et n’empêche pas son internalisation, indiquant que la voie ß-arrestine n’est pas impactée par la nitrosation.L’ensemble de ces résultats permet d’établir que la S-nitrosation d’AT1 constitue une cible thérapeutique potentiellement intéressante dans les AVC, où l’augmentation de la vasoconstriction médiée par AT1 est délétère / Stroke is the second leading cause of death worldwide, the development of new therapeutics is thus urgent. Two actors play a major role in the regulation of cerebral circulation: nitric oxide (NO) and the renin-angiotensin system (RAS). The first chapter of this manuscript focuses on NO, its role and its signaling pathways. We present the available NO donors as well as those in development. Dinitrosobucillamine, a new NO donor developed in our team, is evaluated in vitro and in vivo. The second part of the introduction focuses on RAS and its preponderant role in blood pressure maintenance and cerebrovascular regulation. We present the angiotensin II (AngII) receptors, AT1 and AT2 responsible for vasoconstriction and vasodilation of cerebral arteries, respectively. Finally, the last part presents the regulation of AngII receptors by NO, in particular through S-nitrosation of the receptors, the covalent bound between NO and cysteine residues. We present the work of Leclerc, showing that exposure of cells overexpressing AT1 to NO causes a decrease in AngII affinity for AT1 (Leclerc et al., 2006). The second chapter is devoted to the experimental studies. The objective of this work is to study the importance of AngII receptor S-nitrosation at the cerebrovascular level. First, we address the current problematic concerning the nonspecificity of anti-AT1 antibodies. We show here that the new monoclonal anti-AT1 antibody, which is supposed to be more specific, does not recognize AT1 in western blot and immunofluorescence, making its use impossible. We then make a pharmacological demonstration of S-nitrosation effects on AngII receptors. We show that exposure to NO donors (S-nitrosoglutathione or sodium nitroprusside) specifically abolishes AT1-mediated vasoconstriction compared to other vasoconstrictors sharing or not its signaling pathway. Moreover, this exposure also abolishes AT1-mediated AngII-independent myogenic tone, suggesting an alteration on the receptor itself. We also show that this effect (i) does not depend on endogenous NO, (ii) is mediated by S-nitrosation rather than by the cGMP/sGC pathway. Finally, we study AT1 internalization by flow cytometry on a heterologous model of AT1 expression. Our results show that GSNO does not alter AT1 cell surface localization and does not prevent its internalization, indicating that the ß-arrestin pathway is not impacted by nitrosation
6

Synthèse et caractérisation de nanoparticules d'or greffées par le glutathion réduit en vue de l'obtention de réservoirs d'oxyde nitrique / Synthesis and characterization of gold nanoparticles grafted with glutathione, as potential nitric oxide reservoirs

Luo, Ming 15 December 2015 (has links)
L’oxyde nitrique (NO) est un messager gazeux jouant de nombreux rôles physiologiques, en particulier au niveau du système cardiovasculaire. Sa biodisponibilité est limitée par sa demi-vie très courte et sa combinaison avec les thiols le stabilise et en assure le stockage et le transport. La diminution de la production endogène de NO observée dans les maladies cardiovasculaires place les médicaments donneurs de NO au centre de nouvelles stratégies thérapeutiques. Cette étude a été dédiée au développement de nouveaux matériaux réservoirs de NO. Tout d’abord, la serumalbumine (SA) a été nitrosée selon trois processus afin d’obtenir un composé mono-S-nitrosé biocompatible. Ensuite, en vue d’obtenir un réservoir à forte capacité de charge en NO, des nanoparticules d’or recouvertes par l’acide dihydrolipoïque, AuNP@DHLA ont été greffées par un nombre élevé de molécules de glutathion réduit (GSH). Il en résulte un fort pouvoir anti-oxydant des nanoparticules synthétisées (AuNP@DHLA-(GSH)n) qui devrait éviter de perturber l’état redox in vivo. De plus, ce nano-objet s’avère poly-S-nitrosable, en s’appuyant sur l’expérience acquise avec la macromolécule SA-SNO. Enfin, des nanoparticules stabilisées par les ions citrate (AuNP-citrate) très instables en condition physiologique ont été incorporées à des films multicouches de polyélectrolytes, obtenus par assemblage couche-par-couche. Il en résulte une stabilisation des AuNP et le film les contenant présente une excellente cyto/hémocompatibilité. Ces travaux ouvrent la voie à l’incorporation des nanoparticules AuNP@DHLA-(GSH)n dans un film multicouches, à leur nitrosation et au dépôt du matériau final en tant que réservoir de NO sur des dispositifs médicaux pour le traitement de maladies cardiovasculaires / Nitric oxide (NO) is a gaseous messenger playing numerous physiological roles, especially in the cardiovascular system. However, its bioavailability is limited due to a short half-life. The combination to thiols increases its stability and facilitates its storage and transport. Thus NO donor drugs represent a promising therapeutic approach in such diseases. The present study aimed at developing NO reservoirs. Firstly, serum albumin (SA) was S-nitrosated through three chemical pathways to prepare SA-SNO. Then, potential NO reservoirs with high loading capacity were developed by anchoring reduced glutathione (GSH) to dihydrolipoic acid capped gold nanoparticles, AuNP@DHLA. The obtained AuNP@DHLA-(GSH)n showed stronger antioxidant power and they will be able not to disturb the cell homeostasis. Its further poly-S-nitrosation will benefit from the S-nitrosation of SA as both macromolecular possess free thiols. In parallel, citrate ions stabilized AuNP were entrapped in multilayer polyelectrolyte films using layer-by-layer (LbL) assemblies, providing proof-of-concept of multilayer films as a useful tool to protect AuNP from degradation and increase the cyto/hemocompatibility toward biological elements. The present work opens the window to S-nitrosate AuNP@DHLA-(GSH)n either as a colloidal solution or immobilized in the multilayer system, which is expected to be applied into developing of NO eluting stent for the treatment of cardiovascular diseases

Page generated in 0.0995 seconds