1 |
Severe acute respiratory syndrome coronavirus infection of human immune cells through antibody-mediated pathwayYip, Ming-shum, 葉名琛 January 2011 (has links)
published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
|
2 |
Serological response in SARS patientsLam, Suk-fun, 林淑芬 January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
3 |
Biochemical, functional and immunogenic characterisation of the SARS spike glycoprotein: implications for thedevelopment of a subunit vaccineKam, Yiu-wing., 甘曜榮. January 2007 (has links)
published_or_final_version / abstract / Microbiology / Doctoral / Doctor of Philosophy
|
4 |
Vaccine development against the severe acute respiratory syndrome-coronavirus (SARS-CoV) using SARS-CoV spike proteinLaw, Ka-man., 羅嘉敏. January 2005 (has links)
published_or_final_version / abstract / Zoology / Master / Master of Philosophy
|
5 |
Mechanism of antibody-dependent enhancement in severe acute respiratory syndrome coronavirus infectionLeung, Hiu-lan, Nancy., 梁曉灡. January 2012 (has links)
Severe lymphopenia is a clinical feature of Severe Acute Respiratory Syndrome
(SARS) patients. However, lymphocytes do not express receptor for SARS-CoV,
neither the widely accepted viral receptor angiotensin converting enzyme 2 (ACE2)
nor the putative receptors Dendritic Cell- and Liver/lymph-Specific Intercellular
adhesion molecule-3-Grabbing Non-integrin (DC-SIGN and L-SIGN). Our group
previously showed in vitro that, SARS-CoV Spike pseudotyped particles (SARSCoVpp)
could infect human B cells only when inoculated in presence of anti-SARSCoV
Spike immune serum. Such observations raised concerns about the possible
occurrence of antibody-dependent enhancement (ADE) of infection, a phenomenon
during which a virus bounded by antibodies could gain entry into cells through
mechanisms involving complement receptors or Fc receptors. Recently, we have
demonstrated the participation of the human Fc gamma receptor II (hFcγRII)
molecules in granting SARS-CoV an opportunity to infect human immune cells.
The aim of this study was to decipher the molecular mechanism leading to antibodymediated,
FcγRII-dependent infection of immune cells by SARS-CoV. By using
transduction experiment, I highlighted that different members of the hFcγRII family
(namely hFcγRIIA, hFcγRIIB1 and hFcγRIIB2) could confer susceptibility to ADE of
SARS-CoVpp infection. I further demonstrated that purified anti-viral
immunoglobulin G, but not other soluble factor(s) from heat-inactivated immune
serum, was the determinant for occurrence of ADE infection. Additionally, with the
development of a cell-cell fusion assay, I illustrated that in contrast to the ACE2-
dependent pathway, ADE infection did not occur at the plasma membrane, but rather
require internalization of virus/antibodies immune complexes by the target cells. In
line with this hypothesis, my results using a panel of FcγRII-expressing mutants
demonstrated that binding of immune complexes to cell surface FcγRII was a
prerequisite but was not sufficient to trigger ADE infection. In these experiments,
only FcγRII signaling-competent constructions conferred susceptibility to ADE of
SARS-CoVpp infection.
Altogether my results point toward a role of the anti-SARS-CoV Spike IgG in vitro in
granting SARS-CoV an opportunity to infect cells bearing signaling-competent
FcγRII receptors. If further confirmed, such observations could have implications for
understanding SARS-CoV tropism and SARS pathogenesis, as well as warrant for
careful design of SARS vaccines and immunotherapy based on anti-viral antibodies. / published_or_final_version / Microbiology / Master / Master of Philosophy
|
Page generated in 0.1062 seconds