• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 90
  • 90
  • 40
  • 16
  • 15
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Strain Green's functions for buried quantum dots

Pearson, Gary S. January 2001 (has links)
No description available.
52

Studies of the electrical and structural properties of organic semiconducting thin films of thermally evaporated cobalt phthalocyanine

Shihub, Salahedin Ibrahim January 1997 (has links)
No description available.
53

Development of electronic materials for infra-red detector systems

McChesney, John-James Stuart Duncan January 1999 (has links)
Indium antimonide (InSb) and gallium antimonide (GaSb) are technologically important III-V semiconductor materials used in infrared detector systems. Yet, the application of these materials is to a certain extent limited, in that the techniques currently used for their growth are both expensive and problematic. Semiconductor electrochemical deposition, which has been successfully applied to the generation of II-VI semiconductor materials, may offer the prospect of overcoming such limitations. This work presents results that represent a significant contribution to the development of electrochemical methods for both InSb and GaSb thin film growth. The direct electrochemical co-deposition of InSb was achieved via the potentiostatic electrolysis of aqueous halide/citric acid electrolyte solutions, and for the first time, non-aqueous (ethylene glycol) electrolyte solutions containing the halides and tetraethylammonium chloride. This choice of solvents allowed the compound's deposition to be studied over a wide range of temperatures (RT to 185 °C). A first report was also made of the direct potentiostatic co-deposition of GaSb from an aqueous solution containing Ga[2](SO[4])[3] and SbCl[3].An extensive study was carried out on the relationship between the technique's fundamental growth parameters (temperature, deposition potential, solution composition etc.) and the film's compositional, crystallographic and morphological properties. The material's characterisation showed that there was tendency for the films to be non-stoichiometric. X-Ray diffraction patterns obtained from InSb films deposited from aqueous electrolyte solutions showed them to generally consist of two phases, the compound and, depending mostly on deposition potential, one of the elements. Films containing three phases, the compound and both elements, were deposited on Ti substrates from aqueous solutions and on to ITO substrates from non-aqueous solutions. These results were interpreted from both thermodynamic and kinetic viewpoints. This led to the conclusion that kinetic barriers to the formation of InSb still existed, even at the highest temperature used (~185 °C). In respect of GaSb, the compound's formation was complicated by a side reaction involving the evolution of H[2].New studies involving Scanning Electron Microscopy of the electrodeposited materials showed that they exhibited a nodular morphology, which can be explained in terms of the film's limiting current growth conditions. Energy Dispersive X-Ray Analysis (EDX) and Glow Discharge Optical Emission Spectroscopy (GDOES) identified indium chloride as a major impurity in the InSb films, especially those deposited from non-aqueous solutions. A mechanism for the incorporation of indium chloride was proposed, based on the physical entrapment of a precipitate of the compound.
54

An investigation of the structure of disordered materials by using neutron diffraction

Petri, Ingrid January 1999 (has links)
No description available.
55

Estudo comparativo das respostas de diodos de Si para dosimetria de radiacao gama / Comparative study of Si diodes response for gamma radiation dosimetry

PASCOALINO, KELLY C. da S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:34Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:07Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
56

Ressonâncias Stark e tunelamento em heteroestruturas semicondutoras. / Stark resonances and quantum tunnel effect in semiconductor heterostructures.

Luiz Alberto Cury 15 September 1987 (has links)
Neste trabalho determinamos a estrutura dos níveis dos estados quase-ligados e virtuais em sistemas de poços quânticos acoplados de AlGaAs-GaAs na presença de um campo elétrico externo (Voltagem) perpendicular às camadas semicondutoras. As heteroestruturas de AlGaAs-GaAs são modeladas por um conjunto de poços quânticos de potencial unidimensionais. Utilizamos a aproximação de função envelope que reduz o problema à solução usual da Equação de Schroedinger de massa efetiva. Os níveis eletrônicos são então determinados utilizando a solução exata da Eq. de Schroedinger em termos das funções de Airy nos poços e barreiras e um formalismo de Matriz de Iteração com Análise de \"Phase-shift\". Nossos resultados estão em boa concordância com resultados experimentais de transições ópticas. Motivados pelas propriedades singulares dos sistemas de dupla barreira, investigamos o tunelamento ressonante de elétrons através de multi-barreiras e a formação de regiões de resistência negativa na curva característica de corrente X voltagem. Para os processos de tunelamento em multi-barreiras determinamos o Coeficiente de Transmissão, como função da energia do elétron incidente, usando o formalismo de Matriz de Iteração. Este método pode ser bastante útil na interpretação de resultados experimentais nestes dispositivos. Calculamos também a densidade de corrente de tunelamento versus a voltagem aplicada no caso de dupla barreira de modo a interpretar recentes resultados experimentais. / In this work the quasi-bound and virtual levels of both electrons and holes are determined in the case of coupled AlxGa1-xAs-GaAs quantum wells in the presence of an external electric (Voltage) perpendicular to the layers. The heterostructures field of AlxGa1-xAs-GaAs are mimicked by a set of unidimensional quantum well potentials. We employ the envelope function approximation and solve the usual effective mass Schrödinger Equation. The electronic levels are then determined by using the exact solution of Schrödinger Eq. in terms of Airy functions into the wells and barriers and an Iteraction Matrix formalism with the Phase-shift method. Our results are in a good agreement with the experimental results of optical measurements. Motivated by the unusual properties of double-barriers devices we investigated the resonant tunneling of electrons through multi-barriers. The transmission Coefficient as a function of energy of the incident electron is determined by using an Interaction Matrix formalism. This method can be very useful in the interpretation of experimental results in semiconductor devices. We also calculate the tunneling current density as a function of applied voltage in the case of a double-barrier in order to interpret recent experimental results.
57

Estudo comparativo das respostas de diodos de Si para dosimetria de radiacao gama / Comparative study of Si diodes response for gamma radiation dosimetry

PASCOALINO, KELLY C. da S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:34Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:07Z (GMT). No. of bitstreams: 0 / Neste trabalho é apresentado um estudo comparativo da resposta de diodos de Si para dosimetria de radiação gama. Os diodos investigados, crescidos pelas técnicas de fusão zonal (Fz) e Czchocralski magnético (MCz), foram processados no Instituto de Física da Universidade de Helsinki no âmbito das pesquisas e desenvolvimento de dispositivos de Si resistentes a danos de radiação segundo a colaboração RD50 do CERN (European Organization for Nuclear Research). Para estudar a resposta dosimétrica dos diodos, eles foram acoplados diretamente no modo fotovoltaico na entrada de um eletrômetro digital para medir o sinal de fotocorrente devido a incidência de raios gama provenientes de uma fonte de 60Co (Gammacell 220). O parâmetro dosimétrico usado para estudar a resposta destes dispositivos foi a carga, obtida pela integração do sinal de corrente pelo tempo de exposição, em função da dose absorvida. Estudos da influência dos procedimentos de pré-irradiação na sensibilidade e estabilidade destes diodos mostraram que a sensibilidade decresce com a dose total absorvida mas depois de uma pré-irradiação de cerca de 873 kGy, eles se tornaram mais estáveis. Efeitos dos danos de radiação eventualmente produzidos nos diodos foram monitorados mediante medidas dinâmicas de corrente e de capacitância depois de cada etapa de irradiação. Ambas as amostras exibiram boa reprodutibilidade de resposta, 2,21% (Fz) e 2,94% (MCz), obtida com 13 medidas consecutivas de 15 kGy comparadas com a equivalente dose de 195 kGy absorvida em uma única etapa de irradiação. É importante notar que estes resultados são melhores do que aqueles obtidos com dosímetros de rotina de polimetilmetacrilato (PMMA) usados em processamento por radiação. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
58

Current transport in hydrogenated amorphous silicon nitride

Morgan, B. A. January 2000 (has links)
A defect band is formed in hydrogenated amorphous silicon nitride (a-SiNx:H) due to current stressing of the material. This gives rise to an increase in conductivity, referred to as current induced conductivity. This thesis investigates the current transport mechanisms that occur in the induced defect band, by comparing the temperature dependence of the conductivity of several sets of a-SiNx:H thin film diodes. These sets were systematically current stressed to different levels with one set remaining unstressed. Samples with energy gaps of 2.06 eV and 2.28 eV were considered. We show that around room temperature a modified Poole-Frenkel description of conduction (i.e. field enhanced hopping of carriers via charged defect states) provides a good fit to the data. Using this model the activation energy of current transport was calculated and shown to depend on the material band gap. Data fitting to the Poole-Frenkel model provided further support for the field-assisted hopping mechanism. Previous investigations had suggested that the defect band resides in the lower half of the band gap, so that current transport through the defect band was then expected to be due to the movement of holes, in a manner consistent with Poole-Frenkel conduction. By considering samples grown on p-type and n-type substrates, we demonstrated that transport was indeed the result of the movement of holes through the defect states within the induced defect band. At lower temperatures the experimental data is poorly described by a modified Poole-Frenkel type process, so further mechanisms were considered, including variable-range hopping and nearest-neighbour hopping. Due to the similar nature and slight temperature dependence of each process, differentiating between the two mechanisms proved difficult. However, other factors such as the temperature range and defect density favoured variable-range hopping transport. By assuming this form of low temperature hopping transport, conduction through the defect-band of the a-SiNx:H, could then be convincingly explained over the entire temperature range from 320 K to 20 K in terms of two dominant transport mechanisms, Poole-Frenkel conduction and variable-range hopping.
59

Photomodulated reflectance spectroscopy of novel semiconductor materials

Rowland, Gareth Llywelyn January 1999 (has links)
Room temperature photomodulated reflectance (PR), Photoluminescence (PL) and double crystal x-ray diffraction (DCXRD) measurements have been performed on a series of tensilely strained InxGa1-xAs (0.316 ≤ x ≤ 0.533) multiple quantum well (QW) structures, with In0.80Ga0.20As0.43P0.57 barriers. The DCXRD measurements provided accurate information on composition, strain and layer thickness, while PR was used to determine the energies of the full manifold of allowed and forbidden critical point interband QW transitions. A three-band effective mass formalism was used to model the QW transitions to derive structural information on each sample. The energies of the ground-state QW transitions, H11 and L11, were found to increase with tensile strain, becoming degenerate near 0.36% tensile strain. Room temperature PR and conventional reflectance (R) measurement have been performed on two I.R. emitting InGaAs/GaAs/A1As vertical cavity surface emitting laser (VCSEL) structures. The R measurements were modelled using a transfer matrix formalism to determine errors in the growth fluxes. A new PR lineshape model has been developed based on energy dependent Seraphin coefficients, to describe the cavity mode interaction with a confined-state QW transition. The model is demonstrated on a set of PR spectra, and used in a novel way to derive the Deltaepsilon2 spectrum of the QW layers directly. The results are compared with those taken of the QW layers directly after removing the top Bragg stack reflector. Whilst the QW layers in one sample were found to be close to nominal, the in composition of QW in the other sample was found to depart significantly from the nominal 23%, and was found to be 28%. Room temperature and ~ 80K PR measurements were performed on three InAs/GaAs self-assembled quantum dot (QD) structures: a sample with a single layer of QDs, and two with two layers. The PR revealed five equally spaced confined-state QD transitions, at both 80K and room temperature, with ~ 54 meV separation. The behaviour of the QD1 transition as a function of temperature was investigated and an anomalous increase in linewidth was observed on cooling. Annealing of one of the samples produced a strong blue shift (~ 250 meV) and narrowing of the QD transitions.
60

Novel routes to nanodispersed semiconductors

Green, Mark A. January 1999 (has links)
No description available.

Page generated in 0.0265 seconds