• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1033
  • 446
  • 232
  • 207
  • 101
  • 37
  • 23
  • 23
  • 12
  • 11
  • 10
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 2698
  • 490
  • 369
  • 350
  • 256
  • 237
  • 223
  • 192
  • 191
  • 177
  • 177
  • 173
  • 164
  • 153
  • 150
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Single cell assays of exocytosis /

Chen, Peng, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 149-157). Also available on the Internet.
482

Single cell assays of exocytosis

Chen, Peng, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 149-157). Also available on the Internet.
483

A Wearable Motion Analysis System to Evaluate Gait Deviations

Martori, Amanda Lynn 01 January 2013 (has links)
A Wearable Motion Analysis System (WMAS) was developed to evaluate gait, particularly parameters that are indicative of mild traumatic brain injury. The WMAS consisted on six Opal IMUs attached on the sternum, waist, left and right thigh and left and right shank. Algorithms were developed to calculate the knee flexion angle, stride length and cadence parameters during slow, normal and fast gait speeds. The WMAS was validated for repeatability using a robotic arm and accuracy using the Vicon motion capture system, the gold standard for gait analysis. The WMAS calculated the gait parameters to within a clinically acceptable range and is a powerful tool for gait analysis and potential concussion diagnosis outside of a laboratory setting.
484

Park hunt : an optimized approach to implement and deploy parking monitoring systems in open environments / Optimized approach to implement and deploy parking monitoring systems in open environments

Siddiqui, Fahd Murtuza 27 February 2012 (has links)
The time consuming, tedious, and, sometimes, never ending search for a parking spot is a matter of common experience. We present an innovative approach to parking monitoring systems that only requires sensors at the entry and exit points of a street segment in an open environment such as a city downtown (as opposed to a closed environment such as a parking garage/lot). It can be trivially understood that using this set-up we can determine the number of vehicles present in a given street segment at any given time. However, the bigger issue is to closely estimate how many of those vehicles are parked or en route. We present an algorithm by which we can have a practical estimate of parked cars without introducing any more sensors. We further present a self-stabilizing system that can be implemented for fault tolerance and a few other methods to mitigate errors that may accrue over time. Our approach is based on the assumption that drivers do not care about the exact location of the parking spot, as long as they know the “street segment” where parking is available. For example, just letting the users know of available parking on 7th street between Red River and Brazos gives them enough information to easily find a parking spot. This type of information would most likely be shown on a map. Once the driver reaches the correct street area, it is easy to locate an empty parking spot. Finally, to test and evaluate our approach, we developed and deployed an embedded system using ultra-sonic sensors, and a Microsoft Bing Map application with the said user interface, along with an interoperable web service that can provide parking information to any third party application. / text
485

Integrated impedance spectroscopy biosensors

Manickam, Arun 11 July 2012 (has links)
Affinity-based biosensors, or in short biosensors, are extremely powerful and versatile analytical tools which are used for the detection of a wide variety of bio-molecules. In recent times, there has been a need for developing low-cost and portable affinity-based biosensor platforms. Such systems need to have a high density of detection sites (i.e biosensing elements) in order to simultaneously detect multiple analytes in a single sample. This has led to the creation of integrated biosensors, which make use of integrated circuits (ICs) for bio-molecular detection. In such systems, it has been demonstrated that by taking advantage of the capabilities of semiconductor and very large scale integrated (VLSI) circuit fabrication processes, it is possible to build compact miniaturized biosensors, which can be used in wide variety of applications such as in molecular diagnostics and for environmental monitoring. Among the various detection modalities for biosensors, Electrochemical Impedance Spectroscopy (EIS) permits real-time detection and has label-free detection capabilities. EIS is fully electronic in nature. Hence, it can be implemented using standard IC technologies. The versatility and ease of integration of EIS makes it a promising candidate for developing integrated biosensor platforms. In this thesis, we first examine the underlying principles of EIS method of biosensing. By analyzing an immunosensor assay as an example, we show that EIS based biosensing is a highly sensitive detection method, which can be used for the detection of a wide variety of analytes. Since EIS relies on small impedance changes in order to perform detection, it requires highly accurate models for the electrode-electrolyte systems. Hence, we also introduce a compact modeling technique for the distributed electrode-electrolyte systems with non-uniform electric fields, which is capable of modelling noise and other non-idealities in EIS. In the second part of this thesis, we describe the design and implementation of an integrated EIS biosensor array, built using a standard complementary metal-oxide-semiconductor (CMOS) process. The chip is capable of measuring admittance values as small as 10nS and has a wide dynamic range (90dB) over a wide range of frequencies (10Hz-50MHz). We also report the results obtained from the DNA and protein detection experiments performed using this chip. / text
486

Development of non-contact passive wireless sensors for detection of corrosion in reinforced concrete bridge decks

Abu-Yosef, Ali Emad 24 February 2014 (has links)
Corrosion of embedded reinforcement is the leading form of deterioration affecting the integrity of reinforced and prestressed concrete bridge members around the world. If undetected, corrosion can limit the service life of the bridge and lead to expensive repairs. The research team at the University of Texas at Austin has developed a new class of passive wireless corrosion sensors. The noncontact (NC) sensor platform provides an economical and nondestructive means for detecting corrosion initiation within concrete. The sensor is powered through the inductive coupling to an external mobile reader that can be handheld or mounted on a vehicle. It is envisioned that the four-dollar sensor will be embedded in concrete during construction and interrogated sporadically over the service life of the structure. The sensor output can be used to detect corrosion initiation within concrete and is expected to enhance the quality information collected during qualitative routine bridge inspections. The NC sensor prototype consists of a resonant circuit that is inductively coupled to a sacrificial transducer. Corrosion of the sacrificial element alters the measured sensor response and is used to detect corrosion within concrete. Electrochemical evaluations were conducted to ensure that the sacrificial element exhibited identical response as the reinforcement steel. In addition, the results of extensive experimental parametric studies were used in conjunction with circuit and electromagnetic finite element models to optimize the NC sensor design. Long-term exposure tests were used to evaluate the reliability of the passive noncontact sensors. Sensors were embedded in reinforced concrete specimens and successfully detected the onset of corrosion in the adjacent reinforcement. Unlike the traditional corrosion evaluation methods, such as half-cell potentials, the sensors output was insensitive to environmental variations. / text
487

MEMS-based electrochemical gas sensors and wafer-level methods

Gatty, Hithesh K January 2015 (has links)
This thesis describes novel microel ectromechanical system (MEMS) based electrochemical gas sensors and methods of fabrication. This thesis presents the research in two parts. In the first part, a method to handle a thin silicon wafer using an electrochemically active adhesive is described. Handling of a thin silicon wafer is an important issue in 3D-IC manufacturing where through silicon vias (TSVs) is an enabling technology. Thin silicon wafers are flexible and fragile, therefore difficult to handle. In addressing the need for a reliable solution, a method based on an electrochemically active adhesive was developed. In this method, an electrochemically active adhesive was diluted and spin coated on a 100 mm diameter silicon wafer (carrier wafer) on which another silicon wafer (device wafer) was bonded. Device wafer was subjected to post processing fabrication technique such as wafer thinning. Successful debonding of the device wafer was achieved by applying a voltage between the two wafers. In another part of the research, a fabrication process for developing a functional nanoporous material using atomic layer deposition is presented. In order to realize a nanoporous electrode, a nanoporous anodized aluminum oxide (AAO) substrate was used, which was functionalized with very thin layers (~ 10 nm) of platinum (Pt) and aluminum oxide (Al2O3) using atomic layer deposition. Nanoporous material when used as an electrode delivers high sensitivity due to the inherent high surface area and is potentially applicable in fuel cells and in electrochemical sensing. The second part of the thesis addresses the need for a high performance gas sensor that is applicable for asthma monitoring. Asthma is a disease related to the inflammation in the airways of the lungs and is characterized by the presence of nitric oxide gas in the exhaled breath. The gas concentration of above approximately 50 parts-per-billion indicates a likely presence of asthma. A MEMS based electrochemical gas sensor was successfully designed and developed to meet the stringent requirements needed for asthma detection. Furthermore, to enable a hand held asthma measuring instrument, a miniaturized sensor with integrated electrodes and liquid electrolyte was developed. The electrodes were assembled at a wafer-level to demonstrate the feasibility towards a high volume fabrication of the gas sensors. In addition, the designed amperometric gas sensor was successfully tested for hydrogen sulphide concentration, which is a bio marker for bad breath. / <p>QC 20150907</p>
488

Electrochemical evaluation of nanocarbons for biogenic analyte detection

Lyon, Jennifer Lee, 1980- 29 August 2008 (has links)
This dissertation explores the use of nanocarbons both as conductive supports for redox enzyme electrochemistry and as electrocatalytic components for the nonmediated detection of biogenic analytes. More specifically, the influence of nitrogen doping of these nanocarbons (referred to herein as nitrogen-doped carbon nanotubes, or N-CNTs) on their bioelectrocatalytic performance is studied through direct enzyme adsorption and exploitation of the N-CNTs' inherent reactivity toward H₂O₂ to create H₂O₂-based sensing strategies. Both nondoped CNTs and N-CNTs may be effectively incorporated into biogenic sensing assemblies, as demonstrated herein using a variety of electrochemical techniques. Chapter 1 gives a general overview of the scope of this research and describes previous studies conducted within our laboratories that demonstrate our CNTs' promise as biogenic electrode materials. Chapter 2 describes the chemical vapor deposition (CVD) method used to prepare both CNTs and N-CNTs and establishes their suitability for use in the detection schemes outlined in later chapters through long-term stability studies. Additionally, the redox activity of Fe nanoparticles entrapped in the CNTs as a result of this CVD growth process is examined using a host of electrochemical experiments. Importantly, the data presented in this chapter show that these Fe particles do not explain the observed electrocatalytic response of the CNTs. Chapter 3 explores the direct adsorption of horseradish peroxidase (HRP) at both nondoped and N-CNTs. Spectroscopic and electrochemical assays are used to compare the extent of HRP enzymatic activity upon immobilization at both types of CNTs. Both types of HRP/CNT composites are then utilized in a quantitative H₂O₂ sensing strategy. Chapter 4 discusses the intrinsic reactivity of N-CNTs toward H₂O₂. Koutecky-Levich plots are used to demonstrate differences in H₂O₂ consumption mechanisms between NCNTs and traditional peroxidases. By replacing HRP with N-CNTs in an amperometric glucose detection scheme, the versatility of N-CNTs as a peroxidase substitute for biogenic analyte detection is demonstrated. Chapter 5 outlines future directions for this research, including possible strategies for improving electron transfer between HRP and both types of CNTs. This chapter also presents a newly developed, mediated oxidase-substrate electrochemical detection method that can easily be modified to incorporate CNTs.
489

Polar analyte effects on charge transport and trapping In organic field effect transistor based chemical and vapor sensors

Duarte, Davianne A. 22 June 2011 (has links)
Organic thin film transistors (TFTs) based on the field effect transistor architecture provide a methodology for sensing by exhibiting a change in the transport properties such as shifts in mobility, threshold voltage and conductivity. Chemical recognition is achievable by various methods including the two processes, which we are studying, direct analyte interactions with the semiconductor and specific receptor molecules on the semiconducting surface. Previous work demonstrates the effects of carrier concentration, grain size (surface morphology), and channel length on the sensing response to analytes such as alcohols, which exhibit a moderate dipole moment. When the alcohol interacts with the organic channel the addition of a trap and a positive charge occurs at the grain boundaries. At low carrier concentrations the added charge has the effect of producing an increase in current for the sensing response. At higher carrier concentrations the occurrence of trapping overwhelms the effect of the positive charge and you see and reduction in current. Typically the mobility shifts, which occur during sensing are correlated with trapping for polar analytes. The magnitude of the mobility decreases are dependent on the dipole moment of the polar analyte. Another aspect of organic materials is the fine-tuning of the chemical sensitivity by modifying the surface with receptor sites to increase the partition coefficient. In our study we pull the polarization, molecular dipole moment, transport and trapping, and partition coefficient concepts together to produce a model, which describes how an OFET based sensor interacts with an analyte with and without receptor molecules and under aqueous conditions. / text
490

Integrated vehicle positioning system using sensors and image processing of beacon signal

廖曉昇, Liu, Hugh-sing, Hugh. January 2000 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy

Page generated in 0.0186 seconds