• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 23
  • 22
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 59
  • 57
  • 56
  • 24
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Artificial Intelligence Guided In-Situ Piezoelectric Sensing for Concrete Strength Monitoring

Yen-Fang Su (11726888) 19 November 2021 (has links)
<p>Developing a reliable in-situ non-destructive testing method to determine the strength of in-place concrete is critical because a fast-paced construction schedule exposes concrete pavement and/or structures undergoing substantial loading conditions, even at their early ages. Conventional destructive testing methods, such as compressive and flexural tests, are very time-consuming, which may cause construction delays or cost overruns. Moreover, the curing conditions of the tested cylindrical samples and the in-place concrete pavement/structures are quite different, which may result in different strength values. An NDT method that could directly correlate the mechanical properties of cementitious materials with the sensing results, regardless of the curing conditions, mix design, and size effect is needed for the in-situ application.</p><p>The piezoelectric sensor-based electromechanical impedance (EMI) technique has shown promise in addressing this challenge as it has been used to both monitor properties and detect damages on the concrete structure. Due to the direct and inverse effects of piezoelectric, this material can act as a sensor, actuator, and transducer. This research serves as a comprehensive study to investigate the feasibility and efficiency of using piezoelectric sensor-based EMI to evaluate the strength of newly poured concrete. To understand the fundamentals of this method and enhance the durability of the sensor for in-situ monitoring, this work started with sensor fabrication. It has studied two types of polymer coating on the effect of the durability of the sensor to make it practical to be used in the field.</p><p>The mortar and concrete samples with various mix designs were prepared to ascertain whether the results of the proposed sensing technique were affected by the different mixtures. The EMI measurement and compressive strength testing methods (ASTM C39, ASTM C109) were conducted in the laboratory. The experimental results of mortar samples with different water-to-cement ratios (W/C) and two types of cement (I and III) showed that the correlation coefficient (R<sup>2</sup>) is higher than 0.93 for all mixes. In the concrete experiments, the correlation coefficient between the EMI sensing index and compressive strength of all mixes is higher than 0.90. The empirical estimation function was established through a concrete slab experiment. Moreover, several trial implementations on highway construction projects (I-70, I-74, and I-465) were conducted to monitor the real-time strength development of concrete. The data processing method and the reliable index of EMI sensing were developed to establish the regression model to correlate the sensing results with the compressive strength of concrete. It has been found that the EMI sensing method and its related statistical index can effectively reflect the compressive strength gain of in-place concrete at different ages.</p><p>To further investigate the in-situ compressive strength of concrete for large-scale structures, we conducted a series of large concrete slabs with the dimension of 8 feet × 12 feet × 8 inches in depth was conducted at outdoor experiments field to simulate real-world conditions. Different types of compressive strength samples, including cast-in-place (CIP) cylinder (4” × 6”) – (ASTM C873), field molded cylinder (4” × 8”) – (ASTM C39), and core drilled sample (4” × 8”) – (ASTM C42) were prepared to compare the compressive strength of concrete. The environmental conditions, such as ambient temperatures and relative humidity, were also recorded. The in-situ EMI monitoring of concrete strength was also conducted. The testing ages in this study were started from 6 hours after the concrete cast was put in place to investigate the early age results and continued up to 365 days (one year) later for long-term monitoring. The results indicate that the strength of the CIP sample is higher than the 4” x 8” molded cylinder , and that core drilled concrete is weaker than the two aforementioned. The EMI results obtained from the slab are close to those obtained from CIP due to similar curing conditions. The EMI results collected from 4 × 8-inch cylinder samples are lower than slab and CIP, which aligns with the mechanical testing results and indicates that EMI could capture the strength gain of concrete over time.</p><p>The consequent database collected from the large slab tests was used to build a prediction model for concrete strength. The Artificial Neuron Network (ANN) was investigated and experimented with to optimize the prediction of performances. Then, a sensitivity analysis was conducted to discuss and understand the critical parameters to predict the mechanical properties of concrete using the ML model. A framework using Generative Adversarial Network (GAN) based on algorithms was then proposed to overcome real data usage restrictions. Two types of GAN algorithms were selected for the data synthesis in the research: Tabular Generative Adversarial Networks (TGAN) and Conditional Tabular Generative Adversarial Networks (CTGAN). The testing results suggested that the CTGAN-NN model shows improved testing performances and higher computational efficiency than the TGAN model. In conclusion, the AI-guided concrete strength sensing and prediction approaches developed in this dissertation will be a steppingstone towards accomplishing the reliable and intelligent assessment of in-situ concrete structures.</p><br>
102

Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive Routes

Liu, Chang 30 May 2019 (has links)
No description available.
103

Field Experimentation and Finite Element Analysis of Prominent Drive-by Bridge Inspection Techniques

Brooker, Caden B. 25 May 2021 (has links)
No description available.
104

Structural Health Monitoring With Emphasis On Computer Vision, Damage Indices, And Statistical Analysis

Zaurin, Ricardo 01 January 2009 (has links)
Structural Health Monitoring (SHM) is the sensing and analysis of a structure to detect abnormal behavior, damage and deterioration during regular operations as well as under extreme loadings. SHM is designed to provide objective information for decision-making on safety and serviceability. This research focuses on the SHM of bridges by developing and integrating novel methods and techniques using sensor networks, computer vision, modeling for damage indices and statistical approaches. Effective use of traffic video synchronized with sensor measurements for decision-making is demonstrated. First, some of the computer vision methods and how they can be used for bridge monitoring are presented along with the most common issues and some practical solutions. Second, a conceptual damage index (Unit Influence Line) is formulated using synchronized computer images and sensor data for tracking the structural response under various load conditions. Third, a new index, Nd , is formulated and demonstrated to more effectively identify, localize and quantify damage. Commonly observed damage conditions on real bridges are simulated on a laboratory model for the demonstration of the computer vision method, UIL and the new index. This new method and the index, which are based on outlier detection from the UIL population, can very effectively handle large sets of monitoring data. The methods and techniques are demonstrated on the laboratory model for damage detection and all damage scenarios are identified successfully. Finally, the application of the proposed methods on a real life structure, which has a monitoring system, is presented. It is shown that these methods can be used efficiently for applications such as damage detection and load rating for decision-making. The results from this monitoring project on a movable bridge are demonstrated and presented along with the conclusions and recommendations for future work.
105

The Effect of Sensor Mass, Sensor Location, and Delamination Location of Different Composite Structures Under Dynamic Loading

Liu, Albert Darien 01 January 2013 (has links) (PDF)
This study investigated the effect of sensor mass, sensor location, and delamination location of different composite structures under dynamic loading. The study pertains to research of the use of accelerometers and dynamic response as a cost-effective and reliable method of structural health monitoring in composite structures. The composite structures in this research included carbon fiber plates, carbon fiber-foam sandwich panels, and carbon-fiber honeycomb sandwich panels. The composite structures were manufactured with the use of a Tetrahedron MTP-8 heat press. All work was conducted in the Cal Poly Aerospace Structures/Composites Laboratory. Initial delaminations were placed at several locations along the specimen, including the bending mode node line locations. The free vibration of the composite structure was forced through a harmonic horizontal vibration test using an Unholtz-Dickie shake system. A sinusoidal sweep input was considered for the test. The dynamic response of the composite test specimens were measured using piezoelectric accelerometers. Measurements were taken along horizontal and vertical locations on the surfaces of the composite structures. Square inch grids were marked on the surfaces to create a meshed grid system. Accelerometer measurements were taken at the center of the grids. The VIP Sensors 1011A piezoelectric accelerometer was used to measure vibration response. The measurements were then compared to response measurements taken from a PCB Piezotronics 353B04 single access accelerometer to determine the effects of sensor mass. Deviations in bending mode natural frequency and differences in mode shape amplitude became the criteria for evaluating the effect of sensor mass, sensor location, and delamination location. Changes in damping of the time response were also studied. The experimental results were compared to numerical models created using a finite element method. The experimental results and numerical values were shown to be in good agreement. The sensor mass greatly affected the accuracy and precision of vibration response measurements in the composites structures. The smaller weight and area of the VIP accelerometer helped to minimize the decrease in accuracy and precision due to sensor mass. The effect of sensor location was found to be coupled with the effect of sensor mass and the bending mode shape. The sensor location did not affect the vibration response measurements when the sensor mass was minimized. Off-center horizontal sensor placement showed the possibility of measuring vibration torsion modes. The effect of delamination changed the bending mode shape of the composite structure, which corresponded to a change in natural frequency. The greatest effect of the delamination was seen at the bending mode node lines, where the bending mode shape was most significantly affected. The effect of delamination was also dependent on the location of the delamination and the composite structure type. The results of this study provided considerations for future research of an active structural health monitoring system of composite structures using dynamic response measurements. The considerations included sensor mass reduction, sensor placement at constraints and bond areas and the presence of damping material.
106

NOVEL HIGH-RATE MANUFACTURING PROCESS FOR MULTIFUNCTIONAL THERMOPLASTIC COMPOSITES

Jessica Lavorata Anderson (17593293) 11 December 2023 (has links)
<p dir="ltr">In pursuit of enhanced fuel economy, the automotive industry is exploring the substitution of metal components with lightweight polymer composites. These components must withstand elevated static loading and crash performance, while ideally offering added functionalities and reduced weight. To tackle these challenges, this research presents an innovative manufacturing method aimed at reducing costs and cycle times associated with continuous fiber polymer composites. This method involves producing a linear thermoplastic composite rod known as M-TOW (Multi-tow), which can be molded into intricate shapes to serve as tailored structural reinforcement in hybrid-molded parts. The research encompasses the processing of M-TOW, with a focus on predicting consolidation using Darcy’s law, integrating functional components for thermal and electrical conductivity using overbraided metallic wire or sensing using optical fibers, and its application in real-world scenarios. These advancements showcase the versatility and potential of M-TOW in high-rate continuous fiber manufacturing, paving the way for multifunctional hybrid molded structures.<br><br></p>
107

Material Health Monitoring of SIC/SIC Laminated Ceramic Matrix Composites With Acoustic Emission And Electrical Resistance

Gordon, Neal A. January 2014 (has links)
No description available.
108

Mesure dynamique de déformation par rétrodiffusion Brillouin spontanée B-OTDR / Dynamic strain measurement based on spontaneous Brillouin scattering B-OTDR

Maraval, Damien 11 May 2017 (has links)
Aujourd’hui, trois technologies distinctes et complémentaires sont disponibles pour réaliser des mesures réparties de température, de déformation ou de vibration grâce à l’analyses des rétrodiffusion Raman, Brillouin et Rayleigh. Les besoins industriels actuels se portent sur la mesure répartie de déformation pour des infrastructures avec de longs linéaires, comme les canalisations, pour lesquelles une cartographie linéaire et en temps réel de leur état est demandée. Nous nous focalisons alors sur la conception d’un système de mesure Brillouin capable de mesurer de manière répartie et dynamique les déformations subies par une fibre optique. La méthode employée sera celle du flanc de frange ; elle a déjà été développée et expérimentée sur une architecture opto-électronique de type analyseur Brillouin (Brillouin-OTDA), nécessitant l’accès aux deux extrémités de la fibre optique. Dans notre cas, elle est implémentée sur une architecture fonctionnant en réflectométrie. Les résultats expérimentaux obtenus seront caractérisés et validés par la simulation des mesures de la déformation et du déplacement d’une canalisation supportée entre deux appuis simples ; un modèle mécanique, adapté à cette configuration et transposable sur des projets réels, est développé. Par le biais de partenaire industriels de Cementys, ce modèle est utilisé dans deux projets de surveillance de canalisation d’hydrocarbures dont les moyens d’installation et la finalité sont différents. / Today, three distinct and complementary technologies are available for distributed temperature, strain or vibration measurements with the analysis of Raman, Brillouin and Rayleigh backscattered light. Current industrial needs are distributed strain measurements for linear infrastructures, such as pipelines, for which linear and real-time strain distribution is required. The research work aims to design a new distributed and dynamic strain measurement system based on the analysis of spontaneous Brillouin backscatter by reflectometry. Slope assisted technique is used to accelerate the measurement acquisition, currently limited to static events because of their actual principle of sweep frequency acquisition of the Brillouin backscattering spectrum. The experimental results are characterized and validated by the simulation of the measurements of the deformation and displacement of a pipe supported between two simple supports. A mechanical model, adapted to this configuration and transposable on real projects, is developed. Through Cementys industrial partner, this model is then used for two monitoring project of pipelines with different installation facilities and purpose.
109

Real-time Structural Health Monitoring of Nonlinear Hysteretic Structures

Nayyerloo, Mostafa January 2011 (has links)
The great social and economic impact of earthquakes has made necessary the development of novel structural health monitoring (SHM) solutions for increasing the level of structural safety and assessment. SHM is the process of comparing the current state of a structure’s condition relative to a healthy baseline state to detect the existence, location, and degree of likely damage during or after a damaging input, such as an earthquake. Many SHM algorithms have been proposed in the literature. However, a large majority of these algorithms cannot be implemented in real time. Therefore, their results would not be available during or immediately after a major event for urgent post-event response and decision making. Further, these off-line techniques are not capable of providing the input information required for structural control systems for damage mitigation. The small number of real-time SHM (RT-SHM) methods proposed in the past, resolve these issues. However, these approaches have significant computational complexity and typically do not manage nonlinear cases directly associated with relevant damage metrics. Finally, many available SHM methods require full structural response measurement, including velocities and displacements, which are typically difficult to measure. All these issues make implementation of many existing SHM algorithms very difficult if not impossible. This thesis proposes simpler, more suitable algorithms utilising a nonlinear Bouc-Wen hysteretic baseline model for RT-SHM of a large class of nonlinear hysteretic structures. The RT-SHM algorithms are devised so that they can accommodate different levels of the availability of design data or measured structural responses, and therefore, are applicable to both existing and new structures. The second focus of the thesis is on developing a high-speed, high-resolution, seismic structural displacement measurement sensor to enable these methods and many other SHM approaches by using line-scan cameras as a low-cost and powerful means of measuring structural displacements at high sampling rates and high resolution. Overall, the results presented are thus significant steps towards developing smart, damage-free structures and providing more reliable information for post-event decision making.
110

Uma Contribuição aos Sistemas de Monitoramento de Integridade Estrutural Baseados na Impedância Eletromecânica /

Baptista, Fabricio Guimarães. January 2010 (has links)
Orientador: Jozué Vieira Filho / Banca: Vicente Lopes Junior / Banca: Carlos Antonio. Barros Alves / Banca: Carlos de Marqui Junior / Banca: Washington Luiz de Melo / Resumo: A técnica da impedância eletromecânica (E/M) tem sido amplamente pesquisada para o desenvolvimento de sistemas de SHM (Structural Health Monitoring - monitoramento de integridade estrutural) em diversas aplicações. Embora existam muitos trabalhos que indiquem a eficiência e a viabilidade dessa técnica, alguns problemas práticos em aplicações reais ainda precisam ser investigados. A medição da impedância elétrica, etapa básica da técnica, geralmente é realizada por instrumentos comerciais volumosos, pesados e de alto custo, características proibitivas para muitas aplicações. A seleção da faixa de frequência em que a impedância deve ser medida para assegurar boa sensibilidade ao dano é feita por métodos de tentativa e erro ou por metodologias que utilizam dados medidos em uma quantidade considerável de testes. Além disso, o dimensionamento dos transdutores é feito sem um embasamento teórico, independentemente das características da estrutura monitorada. Neste trabalho é proposto um sistema de medição de impedância elétrica rápido, versátil e de baixo custo que substitui com eficiência os instrumentos comerciais. A partir de um circuito eletromecânico equivalente, o efeito de carregamento do transdutor devido à estrutura monitorada foi analisado. A análise do efeito de carregamento permite dimensionar corretamente o transdutor de acordo com a estrutura monitorada e assegurar um bom desempenho do sistema. O circuito eletromecânico também foi utilizado para determinar, teoricamente, as faixas de frequência em que o transdutor tem boa sensibilidade e auxiliar na seleção da faixa de frequência adequada para a detecção de danos estruturais. Todas as metodologias propostas foram verificadas através de experimentos em estruturas de alumínio e houve uma boa concordância entre os resultados teóricos e experimentais / Abstract: The electromechanical (E/M) impedance technique has been widely studied for the development of Structural Health Monitoring (SHM) systems in various applications. Although there are many studies indicating the effectiveness and feasibility of this technique, some practical issues in real applications yet should be investigated. The electrical impedance measurement, basic stage of the technique, is usually performed by bulky, heavy and expensive instruments; these features are prohibitive for many applications. The selection of the frequency range in which the electrical impedance must be measured to ensure good sensitivity for damage detection is performed by trial and error methods or by methodologies that use measured data in a considerable amount of tests. Furthermore, the design of the transducer is done without theoretical basis, regardless the characteristics of the host structure. In this work, a fast, versatile and low-cost electrical impedance measurement system was developed; the proposed system successfully replaces the conventional instruments. From an equivalent electromechanical circuit, the transducer loading effect due to the host structure was analyzed. The analysis of the loading effect allows the correct design of the transducer according to the host structure for ensure a good performance of the system. The electromechanical circuit was also used to theoretically determine the frequency ranges in which the transducer has good sensitivity and assist in the selection of the suitable frequency range for structural damage detection. All proposed methodologies were validated by experimental tests on aluminum structures and there was a good match between the theoretical and practical results / Doutor

Page generated in 0.0587 seconds