• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 649
  • 31
  • 30
  • 30
  • 29
  • 28
  • 26
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 685
  • 685
  • 330
  • 234
  • 218
  • 135
  • 97
  • 97
  • 92
  • 85
  • 80
  • 77
  • 77
  • 61
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Oscilador eletromagnético caótico /

Amâncio, André Roberto. January 2008 (has links)
Orientador: José Roberto Campanha / Banca: Makoto Yoshida / Banca: Camilo Rodrigues Neto / Resumo: Uma oscilação mecânica pode gerar movimentos caóticos através de vibrações irregulares. O estudo da oscilação mecânica caótica é o objetivo deste trabalho e para isto propomos um sistema eletro - magneto mecânico que descreve um modelo físico que trata do movimento de um fio em um campo magnético. Com simulações numéricas estudamos o sistema, usando a transformada rápida de Fourier, expoentes de Lyapunov, diagrama de bifurcação, seção de Poincaré, trajetórias de plano de fase e gráficos das posições do fio em função do tempo que oscila em movimentos periódicos e caóticos. / Abstract: A mechanical oscillation can to generate chaotic movements through irregular vibrations. The study of chaotic mechanical oscillation is the objective of this work and for this we proposed a mechanical electro - magneto system that describes a physical model that treats the movement of a thread in a magnetic field. With numeric simulations, we studied the system using the fast Fourier transform, Lyapunov exponents, bifurcation diagram, Poincaré section, phase plane trajectories and graphs of the thread positions in time function that oscillate in periodic and chaotic movements. / Mestre
592

Equações de diferenças na projeção de populações / Equations of differences in population dynamics

Novaki, Cristiane 09 December 2016 (has links)
CAPES / O presente trabalho evidencia alguns aspectos das equações de diferenças lineares com coeficientes constantes, algumas de suas aplicações e algumas formas de resolução das mesmas. As equações de diferenças não lineares foram analisadas de forma qualitativa, ou seja, através de seus pontos de equilíbrio e a análise da estabilidade desses pontos. As equações de diferenças são úteis quando se pretende trabalhar com sistemas dinâmicos discretos, ou seja, em situações onde as grandezas mudam a cada intervalo de tempo. Uma de suas aplicações consiste no estudo de crescimento populacional e aqui, em especial, veremos os modelos desenvolvidos por Malthus (crescimento geométrico) e Verhulst (crescimento logístico). Uma análise comparativa será realizada com o intuito de verificar se o modelo de Verhulst se adequa aos dados oficiais e o quanto ele é capaz de acompanhar as projeções oficiais. / The present work aims to show some aspects of linear differences equations with constant coefficients, some of their applications and some ways of solving them. The nonlinear differences equations were analyzed in a qualitative way, through their equilibrium points and stability analysis of these points. The difference equations are useful when working with discrete dynamic systems, in situations where the quantities change within each time interval. One of its applications is the study of population growth, and here, in particular, we will see the models developed by Malthus (geometric growth) and Verhulst (logistic growth). A comparative analysis will be carried out to verify if the Verhulst model fits the official data and how much it is able to follow the official projections.
593

Ciclos limites e a equação de van der Pol /

Cardin, Pedro Toniol. January 2008 (has links)
Orientador: Paulo Ricardo da Silva / Banca: Luis Fernando Mello / Banca: João Carlos Ferreira Costa / Resumo: Nesta dissertação estudamos critérios para determinar a existência, a não existência e a unicidade de ciclos limites de campos de vetores planares. Mais especificamente, estudamos equações de Lienard Äx + f(x; _ x) _ x + g(x) = 0; onde f e g satisfazem determinadas hip¶oteses. Em particular estudamos a equa»c~ao de van der Pol Äx + "(x2 ¡ 1) _ x + x = 0; a qual é conhecida da teoria dos circuitos elétricos. Provamos a existência e a unicidade de ciclos limites para estas equações. Por fim estudamos a equação de van der Pol com o parâmetro" " 1 e o fenômeno canard que ocorre ao considerarmos um parâmetro adicional ®: As técnicas utilizadas s~ao as usuais de Análise Assintótica. / Abstract: In this work we study the existence, the non existence and the uniqueness of limit cycles of planar vector felds. More specifically, we study Lienard equations Äx+f(x; _ x) _ x+g(x) = 0; where f and g satisfy some hypothesis. In particular we study the van der Pol equation Äx + "(x2 ¡ 1) _ x + x = 0; which is knew of the circuit theory. We prove the existence and the uniqueness of limit cycles for these equations. In the last part we study the van der Pol equation with the parameter " " 1 and the canard phenomenon which appears when we consider an additional parameter ®: The techniques employed are the usual in the Asymptotic Analysis. / Mestre
594

Estudo de estabilidade e bifurcações em sistemas não-lineares /

Proto, Vinícius Gorla. January 2013 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Juliana Conceição Precioso Pereira / Banca: Edson Denis Leonel / Resumo: Não disponível / Abstract: Not available / Mestre
595

Existência da função de Lyapunov /

Prado, Eder Flávio. January 2010 (has links)
Orientador: Vanderlei Minori Horita / Banca: Isabel Lugão Rios / Banca: Claudio Aguinaldo Buzzi / Resumo: Neste trabalho vamos estudar equações diferenciais ordinárias e analisar seu comportamento ao longo de suas trajetórias, com o principal objetivo de encontar, caso possível, uma função de Lyapunov apropriada para o sistema, isto é, dar condição suficiente e necessária para a existência dessa função. / Abstract: In this work we study ordinary differential equations and analyse the behavior along of trajectories. The main goal is to find Lyapunov functions for the system when possibel: i e, we want to find necessary and sufficient conditions for the existence of those. / Mestre
596

Análise da dinâmica de um sistema vibrante não ideal de dois graus de liberdade /

Cauz, Luiz Oreste. January 2005 (has links)
Orientador: Masayoshi Tsuchida / Banca: Márcio José Horta Dantas / Banca: Manoel Ferreira Borges Neto / Resumo: Neste trabalho apresentamos um estudo da dinâmica de um sistema vibrante não ideal, composto por um motor e uma mola, conhecido como vibrador centrífugo. O objetivo deste estudo é mostrar a diferença de comportamento do sistema, quando consideramos molas duras (coeficiente de elasticidade cúbica positivo) ou molas suaves (coeficiente de elasticidade cúbica negativo). Para mola dura foi analisada a estabilidade dos pontos de equilíbrio, e mostrada por meio da teoria de variedade central e do teorema de Bezout a existência da bifurcação de Hopf. Para mola suave, þe mostrada a existência de uma órbita heteroclínica conectando dois pontos de sela. Usando o método clássico de Melnikov, é discutida a existência ou não do comportamento caótico para um determinado nível de energia e para certos valores do coeficiente de amortecimento. Toda a análise é acompanhada de simulações numéricas para a confirmação dos resultados. / Abstract: In this work we present a study of the dynamics of a non-ideal vibrating system, composed by a motor and a spring, which is known as centrifugal vibrator. The purpose of this study is to show the difference of behavior of the system when we consider hard springs (positive coefficient of cubical elasticity) or soft springs (negative coefficient of cubical elasticity). For hard spring the stability of the fixed point was analyzed, and by means of the Central Manifolds Theory and the Bezout theorem the existence of the Hopf Bifurcation is shown. For soft spring, it is shown the existence of a heteroclinic orbit connecting two saddle points. Using the classical Melnikov method it is discussed the existence, or not, of the chaotic behavior for some energy level and certain values of the damping coefficient. All the analysis is followed by numerical simulations to confirm the results. / Mestre
597

Aplicações da Transformada de Fourier em soluções numéricas de sistemas periódicos em mecânica / Applications of the Fourier Transform in numerical solutions of periodic systems in mechanics

Eduardo, Eligio Carlos 27 April 2018 (has links)
Submitted by Eligio Carlos Eduardo (eligio.eduardo1.618@gmail.com) on 2018-05-23T13:49:44Z No. of bitstreams: 1 dissertacao1.pdf: 4158096 bytes, checksum: 54d269ca38f12cb406b7db6f9a37bc62 (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-05-23T16:58:19Z (GMT) No. of bitstreams: 1 eduardo_ec_me_rcla.pdf: 4148882 bytes, checksum: 140172be0b9d254f494210f1ed894661 (MD5) / Made available in DSpace on 2018-05-23T16:58:19Z (GMT). No. of bitstreams: 1 eduardo_ec_me_rcla.pdf: 4148882 bytes, checksum: 140172be0b9d254f494210f1ed894661 (MD5) Previous issue date: 2018-04-27 / Este trabalho aborda os aspectos teóricos e numérico da Transformada de Fourier, bem como aplicações em sistemas mecânicos periódicos. O estudo iniciou-se com uma revisão bibliográfica que abordou inicialmente aspectos básicos de equações diferenciais ordinárias, métodos numéricos e implementação computacional, o desenvolvimento teórico da Transformada de Fourier, bem como sua implementação. Realizou-se estudos baseados em simulações numéricas de três modelos físicos: o oscilador harmônico, o pêndulo e o pião simétrico. / This work deals with the theoretical and numerical aspects of the Fourier Transform, as well as applications in periodic mechanical systems. It begins with a bibliographical study about a basic review of ordinary differential equations and its numerical solution methods. We also revisit the theoretical of the Fourier Transform as well an its computational implementation. We applied this theory studed in three physical models: the harmonic oscillator, the pendulum and the symmetrical top.
598

Teorema Ergódico Multiplicativo de Oseledets

Silva, Eberson Ferreira da 08 April 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1157760 bytes, checksum: 92f98240dbe489848ba24b01c26729de (MD5) Previous issue date: 2013-04-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this paper, we study a version of the Multiplicative Ergodic Theorem of Oseledets for diffeomorphisms of class C1 on a compact Riemannian manifold of finite dimension which ensures the existence of Lyapunov exponents at almost every point with respect to a Borel probability measure invariant by diffeomorphism. In fact, we demonstrate the theorem in a more general version, namely in the context of linear cocycles. The theorem of Oseledets for diffeomorphisms will be established as a special case of this version. / Neste trabalho, estudamos uma versão do Teorema Ergódico Multiplicativo de Oseledets para difeomorfismos de classe C1 sobre uma variedade Riemanniana compacta de dimensãofinita que garante a existência dos expoentes de Lyapunov em quase todo ponto com relação a uma medida de probabilidade boreliana invariante pelo difeomorfismo. Na verdade, demonstraremos o teorema em uma versão mais geral, a saber, no contexto de cociclos lineares. O teorema de Oseledets para difeomorfismos será estabelecido como um caso particular desta versão.
599

Formulações de Poison para sistemas dinâmicos

Haas, Fernando January 1994 (has links)
É considerado o problema de encontrar descrições de Poisson (formulações Hamiltonianas generalizadas) associadas a modelos físicos. Aspectos básicos e aplicações dos sistemas de Poisson são explanados utilizando a linguagem da geometria diferencial. Sobre geometria diferencial, consta um capítulo com noções fundamentais. São consideradas as Mecânicas de Nambu e Birkho:ff e suas relações com a Mecânica Hamiltoniana generalizada. A questão da estábilidade é discutida do ponto de vista das formulações de Poisson. Os métodos existentes atualmente para derivação de estruturas Hamiltonianas generalizadas são expostos. Em particular, o processo de redução é estudado. Propõe-se uma abordagem dedutiva e inédita para construção de formulações de Poisson. O novo método é capaz de resolver (localmente) a questão de como encontrar descrições Hamiltonianas de sistemas dinâmicos com no máximo três dimensões. Nos casos tridimensionais nos quais é conhecida uma superfície à qual as trajetórias são sempre tangentes, a nova estratégia reduz esta questão à solução de uma equação diferencial parcial de primeira ordem linear. Deste modo demonstra-se a existência (local) genérica de estruturas de Poisson para sistemas tridimensionais. O caso tridimensional é analizado com detalhe, par ticularmente no concernente à invari ância conforme da identid ade de Jacobi nesta dimensionalidade. A abordagem tratada nesta dissertação é aplicada a vários sistemas tridimensionais de interesse. / The problem of finding Poisson descriptions (generalized Hamiltonian formulations) assoei ateei with physical models is considered. The basic features anel aplications of Poisson systems are explained in the language of differential geometry. One chapter is included with the fundamental notions on differential geometry. The Nambu anel Birkhoff's Mechanics anel their relationship with the generalized Hamiltonian Mechanics are considered. The question of stability is discussed from the point of view of the Poisson formulations. The currently existing methods for derivation of generalized Hamiltonian structures are reviewed. Particularly, the reduction process is analized. A deductive approach is proposed for the construction of Poisson formu lations. The new method can solve (locally) the question of how to finei Hamiltonian descriptions of dynamical systems in, at most, three dimensions. When a surface to wich the motion is always tangent is known , in three dimensions the new approach reduces the problem to the solution of a linear partia! differential equation of first order. This demonstrates the general existence (local) of Poisson structures for tridimensional systems. The tridimensional case is analized in detail, particularly in what concerns the conformai invariance of the Jacobi identity in this dimensionality. The approach proposed in this dissertation is applied to various tridimensional systems of interest.
600

Ordenamento e destilação em um modelo estocástico de partículas interagentes sob contrafluxo

Stock, Eduardo Velasco January 2016 (has links)
Neste trabalho estudamos uma dinâmica estocástica de partículas de duas espécies baseada em células. Basicamente, incorporamos algumas inovações em um modelo unidimensional proposto e resolvido por R. da Silva et al. (Physica A, 2015), que considera que em um célula, na ausência de partículas da espécie contrária, a partícula vai pra frente com uma probabilidade p, que representaria um campo na direção longitudinal de um corredor e fica na própria célula com q=1-p. Contudo, essa probabilidade p é reduzida de acordo com a concentração de partículas contrárias. Nosso trabalho não apenas estendeu o problema pra duas dimensões como também incluiu aspectos relativos a colisão e o espalhamento para células vizinhas. Nossos resultados são divididos em duas situações: a) Espécie contrária permanece imóvel funcionando como obstáculos b) Espécie contrária em movimento. Na primeira situação podemos ver uma interessante transição na distribuição dos tempos de travessia em função das concentrações dos obstáculos, por monitorar a curtose da distribuição. Quando a espécie contrária se movimenta, vemos que o tempo de destilação entre as partículas (tempo para que as espécies estejam geograficamente separadas no corredor) depende do parâmetro ligado ao espalhamento transversal das partículas, parâmetro este, que não influencia no caso das partículas paradas. Finalmente nós colocamos as partículas em um sistema com condições periódicas de contorno. Neste caso, podemos observar o aparecimento de padrões de bandas longitudinais ao campo, exatamente como ocorrem em problemas de coloides carregados sob a ação de campos longitudinais e em modelos de pedestres em corredores. Mostramos como o sistema relaxa para tal tipo de estado estacionário utilizando um adequado parâmetro de ordem ligado a segregação das partículas. Nosso modelo, diferentemente dos modelos para pedestres, não se baseia em equações tipo Langevin. Nossa abordagem é totalmente estocástica e por esse ponto de vista ainda mais fundamental e geral, podendo ser estendida para mais modelos de partículas em fluxos contrários. Nossa solução vem tanto através de simulações Monte Carlo bem como soluções das equações diferenciais parciais que descrevem o sistema e que são oriundas das recorrências estabelecidas para os caminhantes aleatórios. As simulações Monte Carlo e soluções via EDP mostram boa concordância em todos os aspectos analisados, tanto qualitativa quanto quantitativamente. / In this work we study a stochastic dynamic of particles of two types based on cells. Basically we incorporate some innovations on a one-dimensional model proposed and solved by R. da Silva et al. (Physica A, 2015) which considers that in the absence of particles of the opposite species in the cell a particle goes toward the next cell with probability p and returns to the previous cell with probability q = 1 p. However this motion probability linearly decreases with the relative density of the contrary species. Our work not only expands the problem for two dimensions but also includes collision aspects by adding scattering to the neighbouring cells. Our results are divided into two di erent categories: a) One of the species remain xed in their places which means that such particles will work as obstacles; b) Both species can move in the environment. In the rst situation we can observe, by monitoring the kurtosis, that an interesting transition of the crossing time distribution arises as the concentration of the obstacles increases. When both species can move we can observe that the distillation time (spent time for the complete geographical separation of the species in the corridor) depends on the parameter related to the perpendicular scattering of the particles. This same parameter has shown no in uence over the time distributions in the rst situation. Finally we implement periodic boundary conditions in the eld's direction. In this case we are able to observe the arising of band patterns parallel to the eld's direction exactly as it does with oppositely charged colloids under the in uence of a uniform electric eld or pedestrian dynamics in corridors. We also show how the system relax to such stationary state by using a suitable order parameter related to the particles segregation. Di erently from other pedestrian dynamics models, our model is not based on a Langevin-type equation. Our approach is totally stochastic and from this point of view, more fundamental and general to be extended to more types of models considering particles under counter ow. Our solution is obtained by both Monte Carlo simulations and numerical integration of partial di erential equations (PDE) from recurrence relation of the directed random walkers. The Monte Carlo simulations and the solutions of the PDE show a good agreement in all aspects analysed both qualitatively and quantitatively.

Page generated in 0.032 seconds