1 |
Complex and p-adic Hecke Algebra with Applications to SL(2)Roberts, Jeremiah 01 September 2020 (has links)
We discuss two versions of the Hecke algebra of a locally profinite group G, one that is complex valued and one that is p-adic valued. We reproduce several results which are well known for the complex valued Hecke algebra for the p-adic valued Hecke algebra. Specifically we show the equivalence of smooth representations of G and smooth modules of the Hecke algebra of G. We specialize to the group G=GLn(F) for F an extension of Qp, and show that the spherical Hecke algebra of G is finitely generated, and exhibit its generators. This is a standard fact for the complex valued Hecke algebra that we reproduce for the p-adic valued case. We then show that the spherical Hecke algebra of SLnF is isomorphic to a subalgebra of the spherical Hecke algebra of GLnF. Then a character of the spherical Hecke algebra ofGLn(F) can also be viewed as a character of the spherical Hecke algebra of SLn(F). Therefore such a character has two induced modules, one for the Hecke algebra of GLn(F) and another for the Hecke algebra of SLn(F). Theorem 3.4.3 and corollary 3.4.4give a condition under which the coinduced and induced modules of such a character areisomorphic as vector spaces.
|
2 |
On Asymptotic Behaviour and Rectangular Band structures in SL(2,R)Wolfgang A.F. Ruppert, Brigitte E. Breckner, Andreas.Cap@esi.ac.at 28 July 2000 (has links)
No description available.
|
3 |
On tensor product of non-unitary representations of sl(2,R)Stigner, Carl January 2007 (has links)
<p>The study of symmetries is an essential tool in modern physics. The analysis of symmetries is often carried out in the form of Lie algebras and their representations. Knowing the representation theory of a Lie algebra includes knowing how tensor products of representations behave. In this thesis two methods to study and decompose tensor products of representations of non-compact Lie algebras are presented and applied to sl(2,R). We focus on products containing non-unitary representations, especially the product of a unitary highest weight representation and a non-unitary finite dimensional. Such products are not necessarily decomposable. Following the theory of B. Kostant we use infinitesimal characters to show that this kind of tensor product is fully reducible iff the sum of the highest weights in the two modules is not a positive integer or zero. The same result is obtained by looking for an invariant coupling between the product module and the contragredient module of some possible submodule. This is done in the formulation by Barut & Fronsdal. From the latter method we also obtain a basis for the submodules consisting of vectors from the product module. The described methods could be used to study more complicated semisimple Lie algebras.</p>
|
4 |
On tensor product of non-unitary representations of sl(2,R)Stigner, Carl January 2007 (has links)
The study of symmetries is an essential tool in modern physics. The analysis of symmetries is often carried out in the form of Lie algebras and their representations. Knowing the representation theory of a Lie algebra includes knowing how tensor products of representations behave. In this thesis two methods to study and decompose tensor products of representations of non-compact Lie algebras are presented and applied to sl(2,R). We focus on products containing non-unitary representations, especially the product of a unitary highest weight representation and a non-unitary finite dimensional. Such products are not necessarily decomposable. Following the theory of B. Kostant we use infinitesimal characters to show that this kind of tensor product is fully reducible iff the sum of the highest weights in the two modules is not a positive integer or zero. The same result is obtained by looking for an invariant coupling between the product module and the contragredient module of some possible submodule. This is done in the formulation by Barut & Fronsdal. From the latter method we also obtain a basis for the submodules consisting of vectors from the product module. The described methods could be used to study more complicated semisimple Lie algebras.
|
5 |
Classification des objets galoisiens d'une algèbre de HopfAubriot, Thomas 15 June 2007 (has links) (PDF)
Cette thèse porte sur la classification des objets galoisiens d'une algèbre de Hopf. Le concept d'extension de Hopf-Galois, qui a été beaucoup étudié ces dernières années, est une généralisation du concept d'extension galoisienne de corps, mais aussi un analogue des fibrés principaux dans le cadre de la géométrie non commutative. Si $H$ est une algèbre de Hopf, une algèbre $H$-comodule $(Z,\delta: Z \to Z \otimes H)$ est une $H$-extension de Hopf-Galois d'une sous-algèbre $B\subset Z$ si l'ensemble des éléments co\"\i nvariants de $Z$ co\"\i ncide avec $B$ et si l'application canonique $\beta : Z \otimes _B Z \to Z\otimes H$ définie par <br />$$ \beta (x\otimes y ) = \delta (x) (y\otimes 1)$$ est une bijection. Les objets galoisiens forment une classe importante d'extensions de Hopf-Galois ; ce sont celles dont la sous-algèbre des co\"\i nvariants se réduit à l'anneau de base. Bien qu'une littérature abondante ait été consacrée aux extensions de Hopf-Galois, on a peu de résultats sur leur classification à isomorphisme près. Pour contourner la difficulté de classer les extensions de Hopf-Galois à isomorphisme près, Kassel a introduit et développé avec Schneider une relation d'équivalence sur les extensions de Hopf-Galois qu'il a appelée homotopie. <br /><br />Dans cette thèse nous donnons des résultats de classification à homotopie et à isomorphisme près. Notre approche de la classification des objets galoisiens tourne autour de trois axes. <br />\begin{itemize} <br />\item[a)] La construction explicite de représentants des classes d'homotopie des objets galoisiens de l'algèbre $U_q(\mathfrak{g})$ associée par Drinfeld et Jimbo à une algèbre de Lie $\mathfrak{g}$, explicitant ainsi un théorème de Kassel et Schneider. <br />\item[b)] Une étude des objets galoisiens de l'alg\` ebre quantique $O_q (SL(2))$ des fonctions sur le groupe $SL (2)$, et donc un résultat de classification en dimension infinie; nous donnons la classification à isomorphisme près et des résultats partiels pour la classification à homotopie près. <br />\item[c)] Une étude systématique de la classification à isomorphisme et à homotopie près pour les algèbres de Hopf de dimension $\leq 15$ ; nous synthétisons des résultats éparpillés dans la littérature, portant sur des familles d'algèbres de Hopf pointées ou semisimples et nous complétons ces résultats en donnant la classification des objets galoisiens d'une algèbre de Hopf de dimension $8$ qui n'est ni semisimple ni <br />pointée. <br />\end{itemize}
|
6 |
Electromagnetic Duality in SO(3) Yang-Mills Theory : Bachelor Thesis / Elektromagnetisk Dualitet i SO(3) Yang-Mills Teori : Kandidat AvhandlingLundin, Jim January 2018 (has links)
We introduce the historical context and motivation for the search for magnetic monopoles or monopole-like objects. Beginning the theoretical part we investigate the properties of groups as they relate to symmetries in physical theories. Using this as a basis we investigate the requirements for global and local gauge invariance for a scalar field, the latter giving the non-trivial connection to a gauge field. From this we present the Georgi-Glashow model and develop its particle spectrum using the connected Higgs field and its associated Higgs mechanism. We then present the electromagnetic duality by extending the Maxwell's equations toinclude magnetic sources. Using the assumption of magnetic sources we present the Dirac quantization condition, motivating the quantization of electric charge. Returning to our model we present the 't Hooft-Polyakov ansatz and investigate its defining properties as a finite energy soliton in our Higgs field. We show the magnetic properties and motivate its validity as a monopole like object. Continuing we define BPS-states on the lower bound for the mass of a monopole like object with magnetic and electric charge. Giving a BPS monopole as a solution in the vein of 't Hooft and Polyakov. Returning to the electromagnetic duality we propose the Montonen-Olive conjecture by exchanging massive vector bosons in our model with the BPS monopoles we developed. We shortly comment on evident problems and present supersymmetry as a possible solution. Finally we present the Witten Effect by allowing a CP violating term in our Lagrangian. From this we extend the Montonen-Olive conjecture to include invariance under the SL(2,Z) group.
|
7 |
Spacetime as a Hamiltonian Orbit and Geroch's Theorem on the Existence of FermionsBergstedt, Viktor January 2020 (has links)
Over a century since its inception, general relativity continues to lie at the heart of some of the most researched topics in theoretical physics. It seems likely that the coveted solutions to problems like quantum gravity are to be found in an extension of general relativity, one which may only be visible in an alternate formulation of the theory. In this thesis we consider the possibility of casting general relativity in the form of an initial value problem where spacetime is seen as the evolution of space. This evolution is shown to be constrained and of Hamiltonian type. Not all spacetimes are physically acceptable. To be compatible with particle physics, one would like spacetime to accommodate fermions. Here we can take comfort in Geroch’s theorem, which implies that any spacetime that admits a Hamiltonian formulation automatically supports the existence of fermions. We review the elements that go into the proof of this theorem. / Allmän relativitetsteori har i över hundra år legat i teoretiska fysikens framkant. Det är möjligt att lösningarna på öppna problem som kvantiseringen av gravitation går att finna i en utvidgning av allmän relativitetsteori – och kanske uppenbarar sig denna utvidgning bara ur en alternativ formulering av teorin. I den här uppsatsen formuleras allmän relativitetsteori och dess Einsteinekvationer som ett begynnelsevärdesproblem, genom vilket rumtiden kan betraktas som rummets historia. Vi visar att rummets rörelseekvationer är Hamiltons ekvationer med tvångsvillkor. Enligt partikelfysiken bör fermioner kunna finnas till i rumtiden. Härom kan vi åberopa Gerochs sats, enligt vilken rumtider som har en Hamiltonsk formulering också medger fermioner. Vi redogör för huvuddragen i beviset av Gerochs sats.
|
Page generated in 0.0298 seconds