1 |
Solvent Effects and Bioconcentration Patterns of Antimicrobial Compounds in Wetland PlantsAdhikari, Sajag 05 1900 (has links)
This study looked at effects of organic solvents dimethylsulfoxide, dimethylformamide and acetone at 0.01%, 0.05% and 0.1% concentration on germination and seedling development wetland plants. Even at 0.01% level, all solvents affected some aspect of seed germination or seedling growth. Acetone at 0.01% was least toxic. Root morphological characteristics were most sensitive compared to shoot morphological characteristics. This study also looked at bioconcentration patterns of antimicrobial compounds triclosan, triclocarban and methyl-triclosan in wetland plants exposed to Denton Municipal Waste Water Treatment Plant effluent. Bioconcentration patterns of antimicrobial compounds varied among species within groups as well as within organs of species. The highest triclocarban, triclosan and methyltriclosan concentration were in shoot of N. guadalupensis, root of N. lutea and in shoots of P. nodous respectively.
|
2 |
Investigation of Peptide Folding by Nuclear Magnetic Resonance SpectroscopyHwang, SoYoun 2012 May 1900 (has links)
Understanding structure and folding of a protein is the key to understanding its biological function and potential role in diseases. Despite the importance of protein folding, a molecular level understanding of this process is still lacking. Solution-state nuclear magnetic resonance (NMR) is a powerful technique to investigate protein structure, dynamics, and folding mechanisms, since it provides residue-specific information. One of the major contributions that govern protein structure appears to be the interaction with the solvent. The importance of these interactions is particularly apparent in membrane proteins, which exist in an amphiphilic environment. Here, individual peptide fragments taken from the disulfide bond forming protein B (DsbB) were investigated in various solvents. The alpha-helical structures that were obtained, suggest that DsbB follows the two-stage model for folding. However, side chains of polar residues showed different conformations compared to the X-ray structure of fulllength protein, implying that polar side-chains may re-orient upon helix packing in order to form the necessary tertiary interactions that stabilize the global fold of DsbB. Model peptides in general represent attractive systems for the investigation of non-covalent interactions important for protein folding, including those with the solvent. NMR structures of the water soluble peptide, BBA5, were obtained in the presence an organic co-solvent, methanol. These structures indicate that the addition of methanol stabilizes an alpha-helix segment, but disrupts a hydrophobic cluster forming a beta-hairpin. Since dynamic effects reduce the ability for experimental observation of individual, bound solvent molecules, results were compared with molecular dynamics simulations. This comparison indicates that the observed effects of NMR structures are due to preferred binding of methanol and reduction of peptide-water hydrogen bonding. NMR structures, such as those determined here, represent a distribution of conformations under equilibrium. The dynamic process of protein unfolding can nevertheless be accessed through denaturation. A method was developed to probe thermal denaturation by measuring the temperature dependence of NOE intensity. Applied to a model peptide, trpzip4, it was confirmed that the beta-hairpin structure of this peptide is stabilized by the hydrophobic cluster formed by tryptophan residues. Together, the peptides investigated here illustrate the important roles that solvent-peptide interactions and side chain-side chain hydrophobic interactions play in forming stable secondary and tertiary structures.
|
3 |
Thermal cis-to-trans isomerization mechanism of N-(phenylazo)-substituted nitrogen heterocyclesFu, Jinlong January 2008 (has links)
Triazenes, compounds containing a diazoamino moiety (–N(1)=N(2)–N(3)<), are known for their reversible cis-trans isomerization character and hence, have the potential to be used in photoswitchable devices and photostorage media. However, little is known about their cis-trans isomerization mechanism. In this thesis, kinetic studies on the thermal cis-to-trans isomerization of N-(phenylazo)-substituted nitrogen heterocycles are presented. It is shown that the isomerization rate constant increases as the size and electron-donating character of the cyclic amine increases, as the electron-withdrawing character of the para substituent group on the phenyl ring increases, and as the polarity of the solvent increases. All these trends are interpreted in terms of a rotational isomerization mechanism involving a dipolar transition state. In addition, photolytic cleavage of the N(2)–N(3) bond of target substrates is shown to be affected as well by the size and electronic character of the cyclic amine, the electronic character of the phenyl ring substituent, and the polarity of the solvent, with the result that the photolysis yield increases as the isomerization rate decreases.
Theoretical calculations on target substrates both in the gas phase and various solvents were also performed based on DFT-B3LYP/6-31+G* method. Overall, the cis-to-trans isomerization is predicted to take place through rotation around the N(1)=N(2) bond. Furthermore, the calculated energy barriers are found to be influenced by the size and electronic character of the cyclic amine, the electronic character of the phenyl ring substituent, and the polarity of the solvent, consistent with the effects obtained experimentally from the kinetic studies.
|
4 |
Thermal cis-to-trans isomerization mechanism of N-(phenylazo)-substituted nitrogen heterocyclesFu, Jinlong January 2008 (has links)
Triazenes, compounds containing a diazoamino moiety (–N(1)=N(2)–N(3)<), are known for their reversible cis-trans isomerization character and hence, have the potential to be used in photoswitchable devices and photostorage media. However, little is known about their cis-trans isomerization mechanism. In this thesis, kinetic studies on the thermal cis-to-trans isomerization of N-(phenylazo)-substituted nitrogen heterocycles are presented. It is shown that the isomerization rate constant increases as the size and electron-donating character of the cyclic amine increases, as the electron-withdrawing character of the para substituent group on the phenyl ring increases, and as the polarity of the solvent increases. All these trends are interpreted in terms of a rotational isomerization mechanism involving a dipolar transition state. In addition, photolytic cleavage of the N(2)–N(3) bond of target substrates is shown to be affected as well by the size and electronic character of the cyclic amine, the electronic character of the phenyl ring substituent, and the polarity of the solvent, with the result that the photolysis yield increases as the isomerization rate decreases.
Theoretical calculations on target substrates both in the gas phase and various solvents were also performed based on DFT-B3LYP/6-31+G* method. Overall, the cis-to-trans isomerization is predicted to take place through rotation around the N(1)=N(2) bond. Furthermore, the calculated energy barriers are found to be influenced by the size and electronic character of the cyclic amine, the electronic character of the phenyl ring substituent, and the polarity of the solvent, consistent with the effects obtained experimentally from the kinetic studies.
|
5 |
Study on molecular packing and its effect on the tribological properties of ultrathin molecular filmsCheng, Yue-an 27 July 2009 (has links)
Self assembled monolayer films (SAMs) deposited on silicon surfaces have gained considerable interest due to their ability to modify surface properties for advanced applications in sensors, MEMS, and NEMS devices. These molecular films are typically deposited on silicon surfaces from solution using a variety of solvents, which can influence the molecular packing and quality of the films. To better understand these effects, we have performed a systematic solvent effect study of the growth of n-Octadecyltrichlorosilane (OTS) on silicon substrates using chloroform, dichloromethane, toluene, benzene and hexadecane. The films were characterized using contact angle measurements, Fourier Transform Infrared Spectroscopy (FTIR), and Atomic Force Microscopy (AFM) to evaluate the SAM growth rate and film quality. Lateral Force Microscopy (LFM) and transmission FTIR were used to characterize the molecular packing. Finally, we used AFM to make adhesion measurements on the films and correlated these results with friction data. These techniques provide a means to characterize the local nanoscale packing of the films. The Hertzian contact model was used to model and describe the adhesion and friction result. Our results show that using hexadecane as the solvent produced OTS films with the highest density molecular packing. By comparing to Langmuir-Blodgett SAM film deposition methods, we show that it is the intermolecular interaction between the solvent molecules and OTS that determines this density. Thus, the structure and chemical properties of the solvent molecule strongly influences the molecular packing, quality, and performance of the SAM film.
|
6 |
Drowning-out crystallisation of benzoic acid : Influence of processing conditions and solvent composition on crystal size and shapeHolmbäck, Xiomara January 2002 (has links)
The aim of the present investigation is to increase theunderstanding of the role played by the solvent in inhibitingor enhancing crystal growth. Drowning-out crystallizationexperiments has been performed by the controlled addition ofwater or ethanol water mixtures to a saturated solution ofbenzoic acid in ethanol-water mixtures. Crystal habitcontrolling factors have been identified.Seededcrystallization experiments have been carried out to evaluatethe effect of solvent composition on crystal habit at constantsupersaturation. The solubility of benzoic acid inethanol-water mixtures at the working temperatures has beendetermined. Electro-zone sensing determinations and microscopicmeasurements are used to characterize the final crystallineproduct. It has been found that the shape of the benzoic acidcrystals grown from ethanol-water solutions ranges from needlesto platelets. Platy particles possess a predominant basal plane(001), bound by (010) and (100) faces, while needles aredeveloped along the b-axis. Long needle-shaped particles havebeen produced at low initial bulk concentration and highethanol concentration in the feed. Small platelets are obtainedat high initial bulk concentrations and high waterconcentration in the feed. The effect of solvent composition on the growth rate hasbeen evaluated at constant supersaturation. Seed crystals arecharacterized by image analysis measurement both before andafter each experiment. Length and width dimensions have beenmeasured on the particle silhouette. The growth rate, thesolid-liquid interfacial energy and the surface entropy factorfor the (010) faces (length dimension) and (100) faces (widthdimension) have been estimated. The interfacial energy andsurface entropy factor decreases in the direction of increasingethanol concentration due to increasing solubility. The results suggest that at low ethanol concentration(xEtOH<60%) growth proceeds by screw dislocation mechanism,and adsorption of ethanol molecules may reduce the growth rate.As the ethanol concentration increases above a critical value(xEtOH ≥60%), the growth mechanism shifts to surfacenucleation and the growth rate increases with increasingethanol concentration. It has been suggested that the observedeffect of the solvent composition on crystal habit is theresult of two conflicting effects here referred as the kineticand interfacial energy effects. High interactions of the pairethanol-benzoic acid seem to be responsible of the growthretardation (kinetic effect) exerted by the solvent. On theother hand, increased ethanol concentration leads to reduceinterfacial energy and increasing surface nucleation whichmight contribute to enhance growth kinetics. <b>Keywords:</b>drowning-out crystallisation, solventcomposition, benzoic acid, solubility, crystal growth,interfacial energy, surface entropy factor, growth mechanism,crystal shape distribution.
|
7 |
Thermodynamic Studies of Halogen Bonding in Solution and Application to Anion RecognitionSarwar, Md. Golam 19 December 2012 (has links)
Halogen bonding (XB), the interaction between electron deficient halogen compounds and electron donors, is an established non-covalent interaction in the solid and gaseous phases. Understanding of XB in the solution phase is limited. This thesis describes experimental studies of XB interactions in solution, and the application of XB interactions in anion recognition.
Chapter 1 is a brief review of current understanding of XB interaction: theoretical models, studies of XB in solid and gaseous phases and examples in biological systems are discussed. At the end of this chapter, halogen bonding in the solution phase is discussed, along with applications of halogen bonding in organic syntheses.
In chapter 2, linear free energy relationships involving the thermodynamics of halogen bonding of substituted iodoaromatics are studied. The utility of substituent constants and calculated molecular electrostatic potential values as metrics of halogen bond donor ability are discussed. Density Functional Theory (DFT) calculations are shown to have useful predictive values for trends in halogen bond strength for a range of donor-acceptor pairs.
Chapter 3 describes the development of new multidentate anion receptors based on halogen bonding. Bidentate and tridentate receptors were found to exhibit significantly higher binding constants than simple monodentate donors. These receptors show selectivity for halide anions over oxyanions. Using 19F NMR spectra at different temperature, the enthalpies and entropies of anion bindings for monodentate and tridentate receptors were determined. The results indicate a positive entropy contribution to anion binding for both mono and tridentate receptors in acetone solvent.
Finally in chapter 4, some mesitylene based receptors with 3-halopyridinium and 2-iodobenzimidazolium donors are introduced. The receptors perform halide anion recognition in aqueous solvent system through charge-assisted XB interactions. These findings can allude to utility in organic synthesis, supramolecular chemistry and drug design.
|
8 |
Thermodynamic Studies of Halogen Bonding in Solution and Application to Anion RecognitionSarwar, Md. Golam 19 December 2012 (has links)
Halogen bonding (XB), the interaction between electron deficient halogen compounds and electron donors, is an established non-covalent interaction in the solid and gaseous phases. Understanding of XB in the solution phase is limited. This thesis describes experimental studies of XB interactions in solution, and the application of XB interactions in anion recognition.
Chapter 1 is a brief review of current understanding of XB interaction: theoretical models, studies of XB in solid and gaseous phases and examples in biological systems are discussed. At the end of this chapter, halogen bonding in the solution phase is discussed, along with applications of halogen bonding in organic syntheses.
In chapter 2, linear free energy relationships involving the thermodynamics of halogen bonding of substituted iodoaromatics are studied. The utility of substituent constants and calculated molecular electrostatic potential values as metrics of halogen bond donor ability are discussed. Density Functional Theory (DFT) calculations are shown to have useful predictive values for trends in halogen bond strength for a range of donor-acceptor pairs.
Chapter 3 describes the development of new multidentate anion receptors based on halogen bonding. Bidentate and tridentate receptors were found to exhibit significantly higher binding constants than simple monodentate donors. These receptors show selectivity for halide anions over oxyanions. Using 19F NMR spectra at different temperature, the enthalpies and entropies of anion bindings for monodentate and tridentate receptors were determined. The results indicate a positive entropy contribution to anion binding for both mono and tridentate receptors in acetone solvent.
Finally in chapter 4, some mesitylene based receptors with 3-halopyridinium and 2-iodobenzimidazolium donors are introduced. The receptors perform halide anion recognition in aqueous solvent system through charge-assisted XB interactions. These findings can allude to utility in organic synthesis, supramolecular chemistry and drug design.
|
9 |
Drowning-out crystallisation of benzoic acid : Influence of processing conditions and solvent composition on crystal size and shapeHolmbäck, Xiomara January 2002 (has links)
<p>The aim of the present investigation is to increase theunderstanding of the role played by the solvent in inhibitingor enhancing crystal growth. Drowning-out crystallizationexperiments has been performed by the controlled addition ofwater or ethanol water mixtures to a saturated solution ofbenzoic acid in ethanol-water mixtures. Crystal habitcontrolling factors have been identified.Seededcrystallization experiments have been carried out to evaluatethe effect of solvent composition on crystal habit at constantsupersaturation. The solubility of benzoic acid inethanol-water mixtures at the working temperatures has beendetermined.</p><p>Electro-zone sensing determinations and microscopicmeasurements are used to characterize the final crystallineproduct. It has been found that the shape of the benzoic acidcrystals grown from ethanol-water solutions ranges from needlesto platelets. Platy particles possess a predominant basal plane(001), bound by (010) and (100) faces, while needles aredeveloped along the b-axis. Long needle-shaped particles havebeen produced at low initial bulk concentration and highethanol concentration in the feed. Small platelets are obtainedat high initial bulk concentrations and high waterconcentration in the feed.</p><p>The effect of solvent composition on the growth rate hasbeen evaluated at constant supersaturation. Seed crystals arecharacterized by image analysis measurement both before andafter each experiment. Length and width dimensions have beenmeasured on the particle silhouette. The growth rate, thesolid-liquid interfacial energy and the surface entropy factorfor the (010) faces (length dimension) and (100) faces (widthdimension) have been estimated. The interfacial energy andsurface entropy factor decreases in the direction of increasingethanol concentration due to increasing solubility.</p><p>The results suggest that at low ethanol concentration(xEtOH<60%) growth proceeds by screw dislocation mechanism,and adsorption of ethanol molecules may reduce the growth rate.As the ethanol concentration increases above a critical value(xEtOH ≥60%), the growth mechanism shifts to surfacenucleation and the growth rate increases with increasingethanol concentration. It has been suggested that the observedeffect of the solvent composition on crystal habit is theresult of two conflicting effects here referred as the kineticand interfacial energy effects. High interactions of the pairethanol-benzoic acid seem to be responsible of the growthretardation (kinetic effect) exerted by the solvent. On theother hand, increased ethanol concentration leads to reduceinterfacial energy and increasing surface nucleation whichmight contribute to enhance growth kinetics.</p><p><b>Keywords:</b>drowning-out crystallisation, solventcomposition, benzoic acid, solubility, crystal growth,interfacial energy, surface entropy factor, growth mechanism,crystal shape distribution.</p>
|
10 |
The use of solubility parameters to predict the behaviour of a co-crystalline drug dispersed in a polymeric vehicle : approaches to the prediction of the interactions of co-crystals and their components with hypromellose acetate succinate and the characterization of that interaction using crystallographic, microscopic, thermal, and vibrational analysisIsreb, Abdullah January 2012 (has links)
Dispersing co-crystals in a polymeric carrier may improve their physicochemical properties such as dissolution rate and solubility. Additionally co-crystal stability may be enhanced. However, such dispersions have been little investigated to date. This study focuses on the feasibility of dispersing co-crystals in a polymeric carrier and theoretical calculations to predict their stability. Acetone/chloroform, ethanol/water, and acetonitrile were used to load and grow co-crystals in a HPMCAS film. Caffeine-malonic acid and ibuprofennicotinamide co-crystals were prepared using solvent evaporation method. The interactions between each of the co-crystals components and their mixtures with the polymer were studied. A solvent evaporation approach was used to incorporate each compound, a mixture, and co-crystals into HPMCAS films. Differential scanning calorimetry data revealed a higher affinity of the polymer to acidic compounds than their basic counterparts as noticed by the depression of the glass transition temperature (Tg). Moreover, the same drug loading produced films with different Tgs when different solvents were used. Solubility parameter values (SP) of the solvents were employed to predict that effect on the depression of polymer Tg with relative success. SP values were more successful in predicting the preferential affinity of two acidic compounds to interact with the polymer. This was confirmed using binary mixtures of naproxen, flurbiprofen, malonic acid, and ibuprofen. On the other hand, dispersing basic compounds such as caffeine or nicotinamide with malonic acid in HPMCAS film revealed the growth of co-crystals. A dissolution study showed that the average release of caffeine from films containing caffeine-malonic acid was not significantly different to that of films containing similar caffeine concentration. The stability of the caffeine-malonic acid co-crystals in HPMC-AS was prolonged to 8 weeks at 95% relative humidity and 45°C. The theory developed in this project, that an acidic drug with a SP value closer to the polymer will dominate the interaction process and prevent the majority of the other material from interacting with the polymer, may have utility in designing co-crystal systems in polymeric vehicles
|
Page generated in 0.0365 seconds