• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 72
  • 21
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 256
  • 76
  • 76
  • 74
  • 67
  • 60
  • 57
  • 52
  • 44
  • 39
  • 37
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large strain elasto-plastic soil-structure interaction analysis

鄭榕明, Cheng, Yung-ming. January 1992 (has links)
published_or_final_version / Civil and Structural Engineering / Doctoral / Doctor of Philosophy
2

Appraisal of Lade's elasto-plastic soil models and their application to vertical anchors on sand

Liem, Dennis Hing Wu January 1988 (has links)
No description available.
3

Dynamic response of footings and piles

To, W. T. P. January 1985 (has links)
No description available.
4

The coupled finite-boundary element method applied to the analysis of geotechnical engineering problems

Javakhishvili, Zurab January 1995 (has links)
No description available.
5

Large strain elasto-plastic soil-structure interaction analysis /

Cheng, Yung-ming. January 1992 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1992.
6

Transmission of ground-borne vibration from surface railway trains

Ng, S. L. D. January 1995 (has links)
No description available.
7

Novel stabilization methods for sulfate and non-sulfate soils /

Sirivitmaitrie, Chakkrit. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.
8

Initial shear and confining stress effects on cyclic behaviour and liquefaction resistance of sands

Sze, Hon-yue., 施漢裕. January 2010 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
9

Soil-structure interaction under multi-directional earthquake loading

Yan, Xiaorong., 閆晓荣. January 2012 (has links)
The dynamic interaction between the soil and the structure resting on it during earthquakes can alter the response characteristics both of the structure and the soil. Despite significant efforts over the past decades, the interaction effect is not yet fully understood and is sometimes misunderstood. In the context of performance based design, there remain a number of uncertainties to be addressed seriously. Current practice of seismic soil-structure response analysis has tended to focus on the effect of horizontal motion although actual ground motions are comprised of both horizontal and vertical components. In several recent earthquakes, very strong vertical ground motions have been recorded, raising great concern over the potential effect of vertical motion on engineering structures. To address this emerging problem, seismic response considering the soil-structure interaction effect to both vertical and horizontal earthquake motions needs to be investigated. This thesis presents a simple and practical framework for the analysis of site response and soil-structure interaction to both horizontal and vertical earthquake motions, which can take into account the soil nonlinearity and material damping effect. The analysis procedure involves the use of the dynamic stiffness matrix method and equivalent-linear approach and is built in the modern MATLAB environment to take the full advantages of the matrix operations in MATLAB. The input motions can be specified at the soil–bedrock interface or a rock outcropping. A detailed assessment of the procedure is provided to illustrate that the procedure is able to produce acceptable predictions of both vertical and horizontal response of soil-structure systems. It is shown that soil nonlinearity plays an important role in altering the response of the structure and soil, and the methods of analysis for soil-structure interaction adopted in current engineering practice may not be able to adequately account for soil nonlinearity. Furthermore, effects of a number of influencing factors, such as material damping ratio, Poisson’s ratio of soil, intensity and location of input motion and the embedment ratio of the foundation are examined, leading to several useful implications for seismic engineering practice. / published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
10

Numerical analysis of pile group within moving soils

Li, Peng, Loehr, J. Erik. January 2008 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 25, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Erik Loehr. Vita. Includes bibliographical references.

Page generated in 0.0959 seconds