• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 416
  • 85
  • 84
  • 43
  • 20
  • 16
  • 14
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 824
  • 357
  • 250
  • 156
  • 129
  • 108
  • 105
  • 87
  • 83
  • 74
  • 67
  • 64
  • 60
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The regulation of alternative splicing by oncogenic signaling pathways

Shultz, Jacqueline Coates, January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Biochemistry. Title from title-page of electronic thesis. Bibliography: leaves 116-142.
102

Bacterial gene targeting using group II intron L1.LtrB splicing and retrohoming

Yao, Jun, 1974- 10 September 2012 (has links)
The Lactococcus lactis Ll.LtrB group II intron retrohomes by reverse splicing into one strand of a double-stranded DNA target site, while the intron-encoded protein cleaves the opposite strand and uses it as a primer for reverse transcription of the inserted intron RNA. The protein and intron RNA function in a ribonucleoprotein particle, with much of the DNA target sequence recognized by base pairing of the intron RNA. Consequently, Ll.LtrB introns can be reprogrammed to insert into specific or random DNA sites by substituting specific or random nucleotide residues in the intron RNA. Here, I show that an Escherichia coli gene disruption library obtained using randomly inserted Ll.LtrB introns contains most viable E. coli gene disruptions. Further, each inserted intron is targeted to a specific site by its unique base-pairing regions, and in most cases, could be recovered by PCR and used unmodified to obtain the desired single disruptant. I also demonstrate that Ll.LtrB introns can be used for efficient gene targeting in a variety of Gram-negative and positive bacteria, including E. coli, Pseudomonas aeruginosa, Agrobacterium tumefaciens, Bacillus subtilis, and Staphylococcus aureus. Ll.LtrB introns expressed from a broad-host-range vector or an E. coli-S. aureus shuttle vector yielded targeted disruptions in a variety of test genes in these organisms at frequencies of 1-100% without selection. By using an Ll.LtrB intron that integrates in the sense orientation relative to target gene transcription and thus could be removed by RNA splicing, I disrupted the essential gene hsa in S. aureus. Because the splicing of the Ll.LtrB intron by the intron-encoded protein is temperature-sensitive, this method yields a conditional hsa disruptant that grows at 32oC, but not at 43oC. Finally, I developed high-throughput screens to identify E. coli genes that affect either the splicing or retrohoming of the Ll.LtrB intron. By using these screens, I identified fourteen mutants in a variety of genes that have decreased intron retrohoming efficiencies and additional mutants that have increased intron retrohoming efficiencies, in some cases apparently resulting from increased stability of the intron RNA. / text
103

RNA/protein interactions during group II intron splicing and toward group II intron targeting in mammalian cells

Cui, Xiaoxia 28 August 2008 (has links)
Not available / text
104

Structure and organization of C-terminal domain of mitochondrial tyrosyl tRNA synthetase from A. nidulans

Chari, Nandini Sampath 02 December 2010 (has links)
The mitochondrial tyrosyl tRNA synthetases (mtTyrRS) from certain fungii are found to be bifunctional enzymes that aid in group I intron splicing in addition to charging tRNA[superscript Tyr]. This splicing activity is conferred by several insertions that are unique to these mtTyrRS. Initial biochemical evidence suggested the similar tertiary structures of the tRNA and the intron enable binding of the protein to both. However, a recently solved co-crystal structure showed that the tRNA and intron were bound on opposite faces of the protein. The intron was bound almost exclusively by a novel surface formed by several insertions in the protein. This work presents the structure of the C-terminal domain of the A. nidulans mtTyrRS (PDB ID -- 2ktl). NMR results show that the C-terminal domain contains an S4 fold with a mixed [beta]-sheet and two anti-parallel [alpha]-helices that pack against these strands. The strands [beta]1 and [beta]5 are parallel, and [beta]2 to [beta]5 are arranged anti-parallel to each other. The C-terminal domain from A. nidulans mtTyrRS has three insertions in its sequence that make it almost twice the size of bacterial TyrRS. NMR results show that insertion 3 at the N-terminus of the domain is flexible. Insertion 4 is contained in the loop connecting [beta]2-[beta]3 and does not have a well defined structure. Insertion 5 and the C-terminal extension form two helices, [alpha]5 and [alpha]6 that fold away from the core of the protein. An extended helix ([alpha]4) between strands [beta]3 and [beta]4 was identified by NMR. Based on structural alignments with bacterial TyrRS, this helix was classified as a novel insertion 4b in the C-terminal domain. Conserved positively charged residues used to bind the tRNA are found in the turn between the anti-parallel [alpha]-helices and the turn connecting strands [beta]4-[beta]5. Based on a comparison with other TyrRS structures, the three insertions are positioned away from the tRNA binding site. The insertions form a novel RNA binding surface that could interact with the intron. Since these insertions are found in loop and termini regions, they could be a structural adaptation acquired by these splicing mtTyrRS. NMR spectra of the full length TyrRS from B. stearothermophilus and mtTyrRS from A. nidulans indicate that the motion of the C-terminal domain is coupled to that of the full length protein. This provides new information regarding the organization of the full length TyrRS. / text
105

Splicing of human GABAB receptor subunit 1 (GABAB1) in non-alcoholic and alcoholic brains

Lee, Chang Hoon 26 January 2012 (has links)
Gamma-aminobutyric acid type B (GABAB) receptor is a G protein coupled receptor (GPCR) that mediates decreased neural activity. It has two subunits, GABAB1 and GABAB2. Previous complementary DNA (cDNA) microarray data showed strong GABAB1 signals from human prefrontal cortex using an intron 4 region probe, and these studies indicated that novel intron 4 containing GABAB1 splicing variants exist. We cloned GABAB1k, l, m, and n including mouse GABAB1j. Expression of these variants are much lower than other major known splicing variants, but GABAB1k, l, m, and n levels are similar across brain tissues. GABAB1l and GABAB1m impair GABAB receptor induced function. To better define GABAB1 splicing in alcoholic brains, whole transcriptome shortgun sequencing (RNA-seq) experiments were proposed. Due to the complexity of GABAB1 splicing, we used gene specific libraries as well as whole transcriptome libraries to maximize GABAB1 specific splicing junction search. The splicing junction search data found that GABAB1 gene is 2 to 3 times longer than the previous known gene length. Extremely low expression at 5’ end exons was found, and GABAB1 exons were grouped based on expression levels. Chronic alcohol altered exon/intron expression and splicing junctions more than overall gene expression. Decreased exon expression at a GABA binding site, a transmembrane domain (TM), and a microRNA (miRNA) binding site may diminish the normal GABAB1 transcript population and compromise signal transduction following chronic alcohol exposure. This may explain why GABAB receptor agonists have therapeutic benefit in treating alcoholism. During the sequence mapping, read pile-ups and gaps were found from whole transcriptome libraries in known exons. These may prevent single nucleotide polymorphism (SNP) and splicing junction identification and gene expression calculations. Sequence analysis found sequence biases from their mapped reads. The major sequence biases were from RNaseIII RNA fragmentation and T4 polynucleotide kinase (T4PNK) reaction. Heat fragmentation and OptiKinase treatment removed the read pile-ups and gaps including the sequence biases. The identification of RNaseIII target sequences can be incorporated into methods of miRNA gene prediction. These data showed the complexity of GABAB1 receptor splicing and the perturbation of splicing by chronic alcohol abuse demonstrate the power of RNA-seq to provide new insight into gene expression and the role of GABAB receptors in alcoholism. In addition, many other important brain genes may have unexplored splicing variants which will be important for alcoholism and other psychiatric diseases. Also, new RNA-seq library constructions improved the quality of gene expression studies. / text
106

Impact of Low Temperature on RNA Splicing of Aberrant Mitochondrial Group II Introns in Wheat Embryos

Dalby, Stephen J. 08 November 2013 (has links)
A subset of mitochondrial group II introns of flowering plants has, over evolutionary time, lost characteristic features and employs unconventional splicing pathways. Given the potential impact of cold treatment on RNA folding, as well as on enzymatic activity and import of nuclear-encoded splicing machinery, I have examined the physical excised forms of aberrant introns from wheat embryos subjected to 4oC. My findings suggest a shift in biochemistry with cold treatment to novel splicing pathways that generate heterogeneous in vivo circularized forms for nad1 intron 2, nad2 intron 1 and the cox2 intron, in contrast to predominantly linear excised intron forms at room temperature. Interestingly, the highly degenerate nad1 intron 1, which due to DNA rearrangement has been broken into two halves that interact for splicing in trans, is excised exclusively by first-step hydrolysis at room temperature and under cold treatment. In this case, splicing culminates in two distinct linear half introns that appears correlated with an unusual 5’ terminal insert. This represents the first in vivo demonstration of hydrolytic trans-splicing. Based on northern analysis, cold treatment was further associated with reduced splicing efficiency for all introns surveyed. Moreover, study of precursor transcripts of the nad1a-intron 1a locus suggests the efficiency of end-maturation, including processing of the cotranscribed tRNA-Pro gene, is also reduced in the cold. My findings demonstrate a temperature-sensitivity of transcript maturation, particularly for RNA splicing, providing new insight into the impact of cold growth conditions on plant mitochondrial gene expression.
107

Global Analyses of Alternative Splicing in Evolution and Nervous System Development

Calarco, John Anthony 05 January 2012 (has links)
Technological advancements have sparked discovery in biology, enabling important questions to be addressed experimentally at unprecedented depth and scale. One such advance, the development of large-scale approaches to study gene expression, has transformed the way we view the transcriptome. In recent years, these approaches have been applied to studies of alternative RNA splicing, a process where multiple distinct messenger RNAs can be generated from precursor transcripts to produce extensive transcriptomic diversity from a limited repertoire of genes. Global analyses have not only reinforced models initially based on single gene studies, they have also led to numerous insights into general principles governing the regulation and evolution of alternative splicing. In this thesis, I describe how I have combined both large-scale and focused approaches to study alternative splicing regulation during development and in an evolutionary context. Using microarray profiling and comparative genomics approaches, I describe the first large-scale comparative analysis of alternative splicing patterns between humans and chimpanzees. Next, I describe the discovery of a novel neural-specific RS domain splicing factor and the network of alternative exons it regulates to promote nervous system development in vertebrates. Finally, I describe the profiling of alternative splicing patterns during C. elegans development using splicing microarrays and high-throughput sequencing. In this latter study, I also describe two resources that facilitate the analysis of tissue- or cell type-specific splicing events, and enable the function of isoforms to be assessed in vivo. Collectively, these studies have shed light on how differential regulation of alternative splicing has contributed to the evolution of complexity and diversity in biological systems.
108

Global Analyses of Alternative Splicing in Evolution and Nervous System Development

Calarco, John Anthony 05 January 2012 (has links)
Technological advancements have sparked discovery in biology, enabling important questions to be addressed experimentally at unprecedented depth and scale. One such advance, the development of large-scale approaches to study gene expression, has transformed the way we view the transcriptome. In recent years, these approaches have been applied to studies of alternative RNA splicing, a process where multiple distinct messenger RNAs can be generated from precursor transcripts to produce extensive transcriptomic diversity from a limited repertoire of genes. Global analyses have not only reinforced models initially based on single gene studies, they have also led to numerous insights into general principles governing the regulation and evolution of alternative splicing. In this thesis, I describe how I have combined both large-scale and focused approaches to study alternative splicing regulation during development and in an evolutionary context. Using microarray profiling and comparative genomics approaches, I describe the first large-scale comparative analysis of alternative splicing patterns between humans and chimpanzees. Next, I describe the discovery of a novel neural-specific RS domain splicing factor and the network of alternative exons it regulates to promote nervous system development in vertebrates. Finally, I describe the profiling of alternative splicing patterns during C. elegans development using splicing microarrays and high-throughput sequencing. In this latter study, I also describe two resources that facilitate the analysis of tissue- or cell type-specific splicing events, and enable the function of isoforms to be assessed in vivo. Collectively, these studies have shed light on how differential regulation of alternative splicing has contributed to the evolution of complexity and diversity in biological systems.
109

Development and Application of a Novel Method to Detect Mammalian Protein-protein Interactions

Blakely, Kim 04 March 2013 (has links)
Understanding normal and cancer cell biology requires the development and application of systems biology approaches capable of probing the functional human proteome, and the protein-protein interactions (PPIs) within it. Such technologies will facilitate our understanding of how molecular events drive phenotypic outcomes, and how these processes are perturbed in disease conditions. In this thesis, I first describe the development of a mammalian, Gateway compatible, lentivirus-based protein-fragment complementation assay (magical-PCA), for the in vivo high-throughput identification of PPIs in mammalian cells. This technology provides a vast improvement over current PCA methodologies by allowing for pooled, proteome-scale mapping of PPIs in any mammalian cell line of interest, using any bait protein of interest. A proof-of-concept pooled genome-scale screen using the magical-PCA approach was performed using the human mitochondrial protein TOMM22 as a bait, providing evidence that this technology is amenable to proteome-wide screens. Moreover, the TOMM22 screens offered novel insight into links between TOMM22 and proteins involved in mitochondrial organization, apoptosis, and cell cycle dynamics. Second, I performed a pooled genome-scale magical-PCA screen with the oncoprotein BMI1, a component of the E3 ubiquitin ligase complex involved in histone H2A mono-ubiquitination and gene silencing, to identify novel BMI1 protein interactors. Consequently, I have uncovered a novel physical and functional association between BMI1 and components of the mammalian splicing machinery. I further discovered that BMI1 knockdown influenced the alternative splicing of a number of cellular pre-mRNAs in colon cancer cell lines, suggesting that the association between BMI1 and cellular splicing factors impinges on pre-mRNA processing. Importantly, BMI1 expression was shown to influence the alternative splicing of the SS18 oncoprotein towards an exon 8-excluded isoform, which was shown in this study to promote cell proliferation when assessed in an anchorage-independent growth assay. Together, these studies highlight the development of a new methodology for the detection and proteome-scale screening of mammalian PPIs. A proof-of-concept screen with human TOMM22 highlighted the utility of the approach, as I was able to detect both strong and weak or transient PPIs. Application of my screening methodology to BMI1 provided crucial insight into the function of this oncoprotein, and BMI1-driven tumorigenesis.
110

Low detection of exon skipping in mouse genes orthologous to human genes on chromosome 22.

Chern, Tzu-Ming January 2002 (has links)
<p>Alternative RNA splicing is one of the leading mechanisms contributing towards transcript and protein diversity. Several alternative splicing surveys have confirmed the frequent occurrence of exon skipping in human genes. However, the occurrence of exon skipping in mouse genes has not yet been extensively examined. Recent improvements in mouse genome sequencing have permitted the current study to explore the occurrence of exon skipping in mouse genes orthologous to human genes on chromosome 22. A low number (5/72 multi-exon genes) of mouse exon-skipped genes were captured through alignments of mouse ESTs to mouse genomic contigs. Exon-skipping events in two mouse exon-skipped genes (GNB1L, SMARCB1) appear to affect biological processes such as electron and protein transport. All mouse, skipped exons were observed to have ubiquitous tissue expression. Comparison of our mouse exon-skipping events to previously detected human exon-skipping events on chromosome 22 by Hide et al.2001, has revealed that mouse and human exon-skipping events were never observed together within an orthologous gene-pair. Although the transcript identity between mouse and human orthologous transcripts were high (greater than 80% sequence identity), the exon order in these gene-pairs may be different between mouse and human orthologous genes.<br /> <br /> Main factors contributing towards the low detection of mouse exon-skipping events include the lack of mouse transcripts matching to mouse genomic sequences and the under-prediction of mouse exons. These factors resulted in a large number (112/269) of mouse transcripts lacking matches to mouse genomic contigs and nearly half (12/25) of the mouse multi-exon genes, which have matching Ensembl transcript identifiers, have under-predicted exons. The low frequency of mouse exon skipping on chromosome 22 cannot be extrapolated to represent a genome-wide estimate due to the small number of observed mouse exon-skipping events. However, when compared to a higher estimate (52/347) of exon skipping in human genes for chromosome 22 produced under similar conditions by Hide et al.2001, it is possible that our mouse exon-skipping frequency may be lower than the human frequency. Our hypothesis contradicts with a previous study by Brett et al.2002, in which the authors claim that mouse and human alternative splicing is comparable. Our conclusion that the mouse exon-skipping frequency may be lower than the human estimate remains to be tested with a larger mouse multi-exon gene set. However, the mouse exon-skipping frequency may represent the highest estimate that can be obtained given that the current number (87) of mouse genes orthologous to chromosome 22 in Ensembl (v1 30th Jan. 2002) does not deviate significantly from our total number (72) of mouse multi-exon genes. The quality of the current mouse genomic data is higher than the one utilized in this study. The capture of mouse exon-skipping events may increase as the quality and quantity of mouse genomic and transcript sequences improves.</p>

Page generated in 0.0178 seconds