291 |
Automatická klasifikace spánkových fází / Automatic sleep scoringSchwanzer, Miroslav January 2019 (has links)
This master thesis deals with classification of sleep stages on the base of polysomnographic signals. On several signals was performed analysis and feature extraxtion in time domain and in frequency domain as well. For feature extraxtion was used EEG, EOG and EMG signals. For classification was selected classification models K-NN, SVM and artifical neural network. Accuracy of classifation is different depending on used method and spleep stages split. The best results achieved classification among stages Wake, REM, and N3, with neural network usage. In this case the succes was 93,1 %.
|
292 |
Detekce a rozpoznání registrační značky vozidla pro analýzu dopravy / License Plate Detection and Recognition for Traffic AnalysisČerná, Tereza January 2015 (has links)
This thesis describes the design and development of a system for detection and recognition of license plates. The work is divided into three basic parts: licence plates detection, finding of character positions and optical character recognition. To fullfill the goal of this work, a new dataset was taken. It contains 2814 license plates used for training classifiers and 2620 plates to evaluate the success rate of the system. Cascade Classifier was used to train detector of licence plates, which has success rate up to 97.8 %. After that, pozitions of individual characters were searched in detected pozitions of licence plates. If there was no character found, detected pozition was not the licence plate. Success rate of licence plates detection with all the characters found is up to 88.5 %. Character recognition is performed by SVM classifier. The system detects successfully with no errors up to 97.7 % of all licence plates.
|
293 |
Machines à noyaux pour le filtrage d'alarmes : application à la discrimination multiclasse en environnement maritime / Kernels machines for alarm-filtering : application to multiclass discrimination in the naval contextLabbé, Benjamin 03 May 2011 (has links)
Les systèmes infrarouges sont essentiels pour fournir aux forces armées une capacité de reconnaissance des menaces. En contexte opérationnel, ces systèmes sont contraints au temps-réel et à l’accès à des taux de fausses alarmes faibles. Ceci implique la détection des menaces parmi de nombreux objets non-pertinents.Dans ce document, nous combinons des OneClass-SVM pour une décision multiclasse avec rejet(préservant la fausse-alarme). En apprentissage, nous sélectionnons les variables pour contrôler la parcimonie du moteur de décision.Nous présentons également un classifieur original, le Discriminative OneClass-SVM, combinant les propriétés du C-SVM et du OneClass-SVM dans le contexte multiclasse. Ce détecteur de nouveauté n’a pas de dépendance au nombre de classes. Ceci permet une utilisation sur des données à grande échelle.Nos expériences sur des données réelles démontrent l’intérêt des propositions pour les systèmes fortement contraints, face aux méthodes de référence. / Infrared systems are keys to provide automatic control of threats to military forces. Such operational systems are constrained to real-time processing and high efficiency (low false-alarm rate) implying the recognition of threats among numerous irrelevant objects.In this document, we combine OneClass Support Vector Machines (SVM) to discriminate in the multiclass framework and to reject unknown objects (preserving the false-alarm rate).While learning, we perform variable selection to control the sparsity of the decision functions. We also introduce a new classifier, the Discriminative OneClass-SVM. It combines properties of both the biclass-SVM and the OneClass-SVM in a multiclass framework. This classifier detects novelty and has no dependency to the amount of categories, allowing to tackle large scale problems. Numerical experiments, on real world infrared datasets, demonstrate the relevance of our proposals for highly constrained systems, when compared to standard methods.
|
294 |
Intégration de méthodes de représentation et de classification pour la détection et la reconnaissance d'obstacles dans des scènes routières / Integrating representation and classification methods for obstacle detection in road scenesBesbes, Bassem 16 September 2011 (has links)
Cette thèse s'inscrit dans le contexte de la vision embarquée pour la détection et la reconnaissance d'obstacles routiers, en vue d'application d'assistance à la conduite automobile.A l'issue d'une étude bibliographique, nous avons constaté que la problématique de détection d'obstacles routiers, notamment des piétons, à l'aide d'une caméra embarquée, ne peut être résolue convenablement sans recourir aux techniques de reconnaissance de catégories d'objets dans les images. Ainsi, une étude complète du processus de la reconnaissance est réalisée, couvrant les techniques de représentation,de classification et de fusion d'informations. Les contributions de cette thèse se déclinent principalement autour de ces trois axes.Notre première contribution concerne la conception d'un modèle d'apparence locale basée sur un ensemble de descripteurs locaux SURF (Speeded Up RobustFeatures) représentés dans un Vocabulaire Visuel Hiérarchique. Bien que ce modèle soit robuste aux larges variations d'apparences et de formes intra-classe, il nécessite d'être couplé à une technique de classification permettant de discriminer et de catégoriser précisément les objets routiers. Une deuxième contribution présentée dans la thèse porte sur la combinaison du Vocabulaire Visuel Hiérarchique avec un classifieur SVM.Notre troisième contribution concerne l'étude de l'apport d'un module de fusion multimodale permettant d'envisager la combinaison des images visibles et infrarouges.Cette étude met en évidence de façon expérimentale la complémentarité des caractéristiques locales et globales ainsi que la modalité visible et celle infrarouge.Pour réduire la complexité du système, une stratégie de classification à deux niveaux de décision a été proposée. Cette stratégie est basée sur la théorie des fonctions de croyance et permet d'accélérer grandement le temps de prise de décision.Une dernière contribution est une synthèse des précédentes : nous mettons à profit les résultats d'expérimentations et nous intégrons les éléments développés dans un système de détection et de suivi de piétons en infrarouge-lointain. Ce système a été validé sur différentes bases d'images et séquences routières en milieu urbain. / The aim of this thesis arises in the context of Embedded-vision system for road obstacles detection and recognition : application to driver assistance systems. Following a literature review, we found that the problem of road obstacle detection, especially pedestrians, by using an on-board camera, cannot be adequately resolved without resorting to object recognition techniques. Thus, a preliminary study of the recognition process is presented, including the techniques of image representation, Classification and information fusion. The contributions of this thesis are organized around these three axes. Our first contribution is the design of a local appearance model based on SURF (Speeded Up Robust Features) features and represented in a hierarchical Codebook. This model shows considerable robustness with respect to significant intra-class variation of object appearance and shape. However, the price for this robustness typically is that it tends to produce a significant number of false positives. This proves the need for integration of discriminative techniques in order to accurately categorize road objects. A second contribution presented in this thesis focuses on the combination of the Hierarchical Codebook with an SVM classifier.Our third contribution concerns the study of the implementation of a multimodal fusion module that combines information from visible and infrared spectrum. This study highlights and verifies experimentally the complementarities between the proposed local and global features, on the one hand, and visible and infrared spectrum on the other hand. In order to reduce the complexity of the overall system, a two-level classification strategy is proposed. This strategy, based on belieffunctions, enables to speed up the classification process without compromising there cognition performance. A final contribution provides a synthesis across the previous ones and involves the implementation of a fast pedestrian detection systemusing a far-infrared camera. This system was validated with different urban road scenes that are recorded from an onboard camera.
|
295 |
Approche hybride pour le résumé automatique de textes : Application à la langue arabeMaaloul, Mohamed 18 December 2012 (has links)
Cette thèse s'intègre dans le cadre du traitement automatique du langage naturel. La problématique du résumé automatique de documents arabes qui a été abordée, dans cette thèse, s'est cristallisée autour de deux points. Le premier point concerne les critères utilisés pour décider du contenu essentiel à extraire. Le deuxième point se focalise sur les moyens qui permettent d'exprimer le contenu essentiel extrait sous la forme d'un texte ciblant les besoins potentiels d'un utilisateur. Afin de montrer la faisabilité de notre approche, nous avons développé le système "L.A.E", basé sur une approche hybride qui combine une analyse symbolique avec un traitement numérique. Les résultats d'évaluation de ce système sont encourageants et prouvent la performance de l'approche hybride proposée. Ces résultats, ont montré, en premier lieu, l'applicabilité de l'approche dans le contexte de documents sans restriction quant à leur thème (Éducation, Sport, Science, Politique, Reportage, etc.), leur contenu et leur volume. Ils ont aussi montré l'importance de l'apprentissage dans la phase de classement et sélection des phrases forment l'extrait final. / This thesis falls within the framework of Natural Language Processing. The problems of automatic summarization of Arabic documents which was approached, in this thesis, are based on two points. The first point relates to the criteria used to determine the essential content to extract. The second point focuses on the means to express the essential content extracted in the form of a text targeting the user potential needs.In order to show the feasibility of our approach, we developed the "L.A.E" system, based on a hybrid approach which combines a symbolic analysis with a numerical processing.The evaluation results are encouraging and prove the performance of the proposed hybrid approach.These results showed, initially, the applicability of the approach in the context of mono documents without restriction as for their topics (Education, Sport, Science, Politics, Interaction, etc), their content and their volume. They also showed the importance of the machine learning in the phase of classification and selection of the sentences forming the final extract.
|
296 |
Assessment of a prediction-based strategy for mixingautonomous and manually driven vehicles in an intersection / Utvärdering av en prediktionsbaserad metod för att blanda autonoma och manuella bilar i en korsningNADI, ADRIAN, STEFFNER, YLVA January 2017 (has links)
The introduction of autonomous vehicles in traffic is driven by expected gains in multiple areas, such as improvement of health and safety, better resource utilization, pollution reduction and greater convenience. The development of more competent algorithms will determine the rate and level of success for the ambitions around autonomous vehicles. In this thesis work an intersection management system for a mix of autonomous and manually driven vehicles is created. The purpose is to investigate the strategy to combine turn intention prediction for manually driven vehicles with scheduling of autonomous vehicle. The prediction method used is support vector machine (SVM) and scheduling of vehicles have been made by dividing the intersection into an occupancy grid and apply different safety levels. Real-life data comprising recordings of large volumes of traffic through an intersection has been combined with simulated vehicles to assess the relevance of the new algorithms. Measurements of collision rate and traffic flow showed that the algorithms behaved as expected. A miniature vehicle based on a prototype for an autonomous RC-car has been designed with the purpose of testing of the algorithms in a laboratory setting. / Införandet av autonoma fordon i trafiken drivs av förväntade vinster i flera områden, såsom förbättring av hälsa och säkerhet, bättre resursutnyttjande, minskning av föroreningar och ökad bekvämlighet. Utvecklingen av mer kompetenta algoritmer kommer att bestämma hastigheten och nivån på framgång för ambitionerna kring autonoma fordon. I detta examensarbete skapas ett korsningshanteringssystem för en blandning av autonoma och självkörande bilar. Syftet är att undersöka strategin att kombinera prediktion av hur manuellt styrda bilar kommer att svänga med att schemalägga autonoma bilar utifrån detta. Prediktionsmetoden som använts är support vector machine (SVM) och schemaläggning av bilar har gjorts genom att dela upp korsningen i ett occupancy grid och tillämpa olika säkerhetsmarginaler. Verklig data från inspelningar av stora volymer trafik genom en korsning har kombinerats med simulerade fordon för att bedöma relevansen av de nya algoritmerna. Mätningar av kollisioner och trafikflöde visade att algoritmerna uppträdde som förväntat. Ett miniatyrfordon baserat på en prototyp av en självkörande radiostyrd bil har tagits fram i syfte att testa algoritmerna i laboratoriemiljö.
|
297 |
Automatic Pronoun Resolution for Swedish / Automatisk pronomenbestämning på svenskaAhlenius, Camilla January 2020 (has links)
This report describes a quantitative analysis performed to compare two different methods on the task of pronoun resolution for Swedish. The first method, an implementation of Mitkov’s algorithm, is a heuristic-based method — meaning that the resolution is determined by a number of manually engineered rules regarding both syntactic and semantic information. The second method is data-driven — a Support Vector Machine (SVM) using dependency trees and word embeddings as features. Both methods are evaluated on an annotated corpus of Swedish news articles which was created as a part of this thesis. SVM-based methods significantly outperformed the implementation of Mitkov’s algorithm. The best performing SVM model relies on tree kernels applied to dependency trees. The model achieved an F1-score of 0.76 for the positive class and 0.9 for the negative class, where positives are pairs of pronoun and noun phrase that corefer, and negatives are pairs that do not corefer. / Rapporten beskriver en kvantitativ analys som genomförts för att jämföra två olika metoder för automatisk pronomenbestämning på svenska. Den första metoden, en implementation av Mitkovs algoritm, är en heuristisk metod vilket innebär att pronomenbestämningen görs med ett antal manuellt utformade regler som avser att fånga både syntaktisk och semantisk information. Den andra metoden är datadriven, en stödvektormaskin (SVM) som använder dependensträd och ordvektorer som särdrag. Båda metoderna utvärderades med hjälp av en annoterad datamängd bestående av svenska nyhetsartiklar som skapats som en del av denna avhandling. Den datadrivna metoden överträffade Mitkovs algoritm. Den SVM-modell som ger bäst resultat bygger på trädkärnor som tillämpas på dependensträd. Modellen uppnådde ett F1-värde på 0.76 för den positiva klassen och 0.9 för den negativa klassen, där de positiva datapunkterna utgörs av ett par av pronomen och nominalfras som korefererar, och de negativa datapunkterna utgörs av par som inte korefererar.
|
298 |
Unsupervised Anomaly Detection on Time Series Data: An Implementation on Electricity Consumption Series / Oövervakad anomalidetektion i tidsseriedata: en implementation på elförbrukningsserierLindroth Henriksson, Amelia January 2021 (has links)
Digitization of the energy industry, introduction of smart grids and increasing regulation of electricity consumption metering have resulted in vast amounts of electricity data. This data presents a unique opportunity to understand the electricity usage and to make it more efficient, reducing electricity consumption and carbon emissions. An important initial step in analyzing the data is to identify anomalies. In this thesis the problem of anomaly detection in electricity consumption series is addressed using four machine learning methods: density based spatial clustering for applications with noise (DBSCAN), local outlier factor (LOF), isolation forest (iForest) and one-class support vector machine (OC-SVM). In order to evaluate the methods synthetic anomalies were introduced to the electricity consumption series and the methods were then evaluated for the two anomaly types point anomaly and collective anomaly. In addition to electricity consumption data, features describing the prior consumption, outdoor temperature and date-time properties were included in the models. Results indicate that the addition of the temperature feature and the lag features generally impaired anomaly detection performance, while the inclusion of date-time features improved it. Of the four methods, OC-SVM was found to perform the best at detecting point anomalies, while LOF performed the best at detecting collective anomalies. In an attempt to improve the models' detection power the electricity consumption series were de-trended and de-seasonalized and the same experiments were carried out. The models did not perform better on the decomposed series than on the non-decomposed. / Digitaliseringen av elbranschen, införandet av smarta nät samt ökad reglering av elmätning har resulterat i stora mängder eldata. Denna data skapar en unik möjlighet att analysera och förstå fastigheters elförbrukning för att kunna effektivisera den. Ett viktigt inledande steg i analysen av denna data är att identifiera möjliga anomalier. I denna uppsats testas fyra olika maskininlärningsmetoder för detektering av anomalier i elförbrukningsserier: densitetsbaserad spatiell klustring för applikationer med brus (DBSCAN), lokal avvikelse-faktor (LOF), isoleringsskog (iForest) och en-klass stödvektormaskin (OC-SVM). För att kunna utvärdera metoderna infördes syntetiska anomalier i elförbrukningsserierna och de fyra metoderna utvärderades därefter för de två anomalityperna punktanomali och gruppanomali. Utöver elförbrukningsdatan inkluderades även variabler som beskriver tidigare elförbrukning, utomhustemperatur och tidsegenskaper i modellerna. Resultaten tyder på att tillägget av temperaturvariabeln och lag-variablerna i allmänhet försämrade modellernas prestanda, medan införandet av tidsvariablerna förbättrade den. Av de fyra metoderna visade sig OC-SVM vara bäst på att detektera punktanomalier medan LOF var bäst på att detektera gruppanomalier. I ett försök att förbättra modellernas detekteringsförmåga utfördes samma experiment efter att elförbrukningsserierna trend- och säsongsrensats. Modellerna presterade inte bättre på de rensade serierna än på de icke-rensade.
|
299 |
Grön AI : En analys av maskininlärningsalgoritmers prestanda och energiförbrukningBerglin, Caroline, Ellström, Julia January 2024 (has links)
Trots de framsteg som gjorts inom artificiell intelligens (AI) och maskininlärning (ML), uppkommer utmaningar gällande deras miljöpåverkan. Fokuset på att skapa avancerade och träffsäkra modeller innebär ofta att omfattande beräkningsresurser krävs, vilket leder till en hög energiförbrukning. Syftet med detta arbete är att undersöka ämnet grön AI och sambandet mellan prestanda och energiförbrukning hos två ML-algoritmer. De algoritmer som undersöks är beslutsträd och stödvektormaskin (SVM), med hjälp av två dataset: Bank Marketing och MNIST. Prestandan mäts med utvärderingsmåtten noggrannhet, precision, recall och F1-poäng, medan energiförbrukningen mäts med verktyget Intel VTune Profiler. Arbetets resultat visar att en högre prestanda resulterade i en högre energiförbrukning, där SVM presterade bäst men också förbrukade mest energi i samtliga tester. Vidare visar resultatet att optimering av modellerna resulterade både i en förbättrad prestanda men också i en ökad energiförbrukning. Samma resultat kunde ses när ett större dataset användes. Arbetet anses inte bidra med resultat eller riktlinjer som går att generalisera till andra arbeten. Däremot bidrar arbetet med en förståelse och medvetenhet kring miljöaspekterna gällande AI, vilket kan användas som en grund för att undersöka ämnet vidare. Genom en ökad medvetenhet kan ett gemensamt ansvar tas för att utveckla AI-lösningar som inte bara är kraftfulla och effektiva, utan också hållbara. / Despite the advancements made in artificial intelligence (AI) and machine learning (ML), challenges regarding their environmental impact arise. The focus on creating advanced and accurate models often requires extensive computational resources, leading to a high energy consumption. The purpose of this work is to explore the topic of green AI and the relationship between performance and energy consumption of two ML algorithms. The algorithms being evaluated are decision trees and support vector machines (SVM), using two datasets: Bank Marketing and MNIST. Performance is measured using the evaluation metrics accuracy, precision, recall, and F1-score, while energy consumption is measured using the Intel VTune Profiler tool. The results show that higher performance resulted in higher energy consumption, with SVM performing the best but also consuming the most energy in all tests. Furthermore, the results show that optimizing the models resulted in both improved performance and increased energy consumption. The same results were observed when a larger dataset was used. This work is not considered to provide results or guidelines that can be generalized to other studies. However, it contributes to an understanding and awareness of the environmental aspects of AI, which can serve as a foundation for further exploration of the topic. Through increased awareness, shared responsibility can be taken to develop AI solutions that are not only powerful and efficient but also sustainable.
|
300 |
Analyse et prédiction de la relation séquence - structure locale et flexibilité au sein des protéines globulairesBornot, Aurélie 05 November 2009 (has links) (PDF)
La prédiction in silico de la structure tridimensionnelle d'une protéine à partir de sa séquence en acides aminés constitue un défi scientifique d'intérêt majeur. Il est à présent admis que les structures protéiques peuvent être décrites à partir d'un répertoire limité de structures locales récurrentes. Cette observation a conduit au développement de techniques de prédiction de la structure 3D par assemblage de fragments. Ces techniques sont aujourd'hui parmi les plus performantes. Dans ce contexte, la prédiction des structures locales constitue une première étape vers la prédiction de la structure 3D globale d'une protéine. Mon travail de thèse porte principalement sur l'étude des structures protéiques locales à travers deux thèmes : (i) la prédiction des structures locales à partir de la séquence et (ii) l'analyse de la prédictibilité des structures locales en fonction de la flexibilité des structures protéiques. Ces études reposent sur une bibliothèque de 120 fragments chevauchants de 11 résidus de long précédemment développée au sein du laboratoire. Une méthode de prédiction des structures locales à partir de la séquence avait également été mise en place et permettait d'obtenir un taux de prédiction correct de 51 %. La prise en compte de données évolutionnaires couplée à l'utilisation de Machines à Vecteurs de Support a permis d'améliorer la prédiction des structures locales jusqu'à 63 % de prédiction correctes. De plus, un indice de confiance permettant d'évaluer directement la qualité de la prédiction et ainsi d'identifier les régions plus ardues à prédire a été mis au point. Par ailleurs, la structure des protéines n'est pas rigide. Ainsi, j'ai étendu notre analyse à l'étude la prédictibilité structurale des séquences d'acides aminés en fonction de leur flexibilité structurale au sein des protéines. Une analyse des propriétés dynamiques des structures locales a été menée en s'appuyant sur (i) les B-facteurs issus des expériences de cristallographie et (ii) les fluctuations du squelette polypeptidique observées lors de simulations de dynamique moléculaire. Ces analyses de la relation flexibilité-structure locale ont conduit au développement d'une stratégie de prédiction originale de la flexibilité à partir de la séquence. Nos différentes approches constituent une première étape vers la prédiction de la structure tridimensionnelle globale d'une protéine.
|
Page generated in 0.0274 seconds