Spelling suggestions: "subject:"chronictoxicity"" "subject:"cytogenotoxicity""
1 |
Biological studies of saponin-containing traditional Chinese medicine (TCM) and synthetic saponin.January 2001 (has links)
by Koo Po Lan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 120-130). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / Abstract (Chinese version) --- p.iv / Content --- p.vii / List of Abbreviations --- p.xi / List of Figures and Tables --- p.xiii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Saponins --- p.1 / Chapter 1.2 --- Structure of Saponin --- p.2 / Chapter 1.2.1 --- Triterpene Class --- p.2 / Chapter 1.2.2 --- Steroid Class --- p.3 / Chapter 1.2.2.1 --- Spirostanol Glycoside --- p.4 / Chapter 1.2.2.2 --- Furostanol Glycoside --- p.4 / Chapter 1.2.3 --- Steroid Alkaloid Class --- p.5 / Chapter 1.3 --- Steroidal Saponin as Anti-Tumor Drug --- p.5 / Chapter 1.4 --- Possible Anti-Tumor Action Mechanisms of Steroid Saponin --- p.6 / Chapter 1.4.1 --- Direct Cytotoxic and Growth Inhibitory Effects --- p.7 / Chapter 1.4.2 --- Immune-Modulatory Effects --- p.8 / Chapter 1.5 --- Possible Anti-Carcinogenicity Action Mechanism of Saponin --- p.9 / Chapter 1.5.1 --- Saponin Binding to Bile Acids --- p.9 / Chapter 1.6 --- Saponin as Cardioactive Drug --- p.9 / Chapter 1.7 --- Liver Cancer --- p.10 / Chapter 1.7.1 --- Prevalence of Hepatocellular Carcinoma (HCC) --- p.11 / Chapter 1.8 --- Coronary Heart Disease (CHD) --- p.12 / Chapter 1.8.1 --- Prevalence and Risk Factors of CHD --- p.12 / Chapter 1.9 --- Diosgenin --- p.14 / Chapter 1.10 --- Hong Kong (HK) Products --- p.15 / Chapter 1.10.1 --- HK-18 (Polyphyllin D) --- p.15 / Chapter 1.11 --- DI AO XIN XUE KANG (DI AO) --- p.17 / Chapter 1.12 --- Aims of My Project --- p.20 / Chapter 1.12.1 --- In Vitro Study of the Effect of HK-18 on Human Hepatocellular Carcinoma Cell Line (HepG2) --- p.21 / Chapter 1.12.2 --- In Vivo Study of the Effect of HK-18 by Human Liver Tumor HepG2 Cells-Bearing Nude Mice Model --- p.21 / Chapter 1.12.3 --- In Vitro Study of the Effect of HK-18 on Multidrug- Resistant Human Hepatocellular Carcinoma Cell Line (R-HepG2) --- p.22 / Chapter 1.12.4 --- Myocardial Ischemia-Reperfusion (IR) Injury in Isolated- Perfused Rat Heart Model --- p.23 / Chapter 1.12.5 --- Effect of DI AO Pretreatment on Global IR Injury --- p.26 / Chapter 1.12.6 --- Effect of DI AO Pretreatment on Isoproterenol-Induced Myocardial Injury in Rats --- p.26 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials --- p.28 / Chapter 2.1.1 --- Cell Lines and Culture Medium / Chapter 2.1.1.1 --- Cell Lines --- p.28 / Chapter 2.1.1.2 --- Culture Medium --- p.29 / Chapter 2.1.2 --- Chemicals --- p.30 / Chapter 2.1.3 --- Buffers and Reagents --- p.31 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- In Vitro Studies --- p.33 / Chapter 2.2.1.1 --- In Vitro Cytotoxicity --- p.33 / Chapter 2.2.1.2 --- Cell Cycle Analysis by Flow Cytometry --- p.34 / Chapter 2.2.1.3 --- Maintenance of P-glycoprotein in R-HepG2 cells by Doxorubicin and HK-18 --- p.35 / Chapter 2.2.1.4 --- Assessment of DNA Fragmentation --- p.36 / Chapter 2.2.2 --- In Vivo Assessment of the Anti-Tumor Activity of HK-18 --- p.37 / Chapter 2.2.2.1 --- Animals and Tumor Inoculation --- p.37 / Chapter 2.2.2.2 --- Drug Administration --- p.37 / Chapter 2.2.2.3 --- Assessment of the Tumor Size and Tumor Weight --- p.38 / Chapter 2.2.2.4 --- Plasma Preparation --- p.38 / Chapter 2.2.2.5 --- Measurement of the Plasma Enzyme Activity --- p.39 / Chapter 2.2.3 --- Isoproterenol (ISO)-Induced Myocardial Injury (Rat Model) --- p.40 / Chapter 2.2.3.1 --- Animals --- p.40 / Chapter 2.2.3.2 --- Drug Preparations --- p.40 / Chapter 2.2.3.3 --- Animal Treatment --- p.41 / Chapter 2.2.3.4 --- Preparation of Myocardial Tissue Homogenate --- p.41 / Chapter 2.2.3.5 --- Preparation of Cytosolic Fraction of Heart Homogenates --- p.42 / Chapter 2.2.3.6 --- Myocardial Antioxidant Enzyme Activity --- p.42 / Chapter 2.2.3.6.1 --- Glutathione Reductase (GRD) --- p.42 / Chapter 2.2.3.6.2 --- Glutathione S-Transferases (GST) --- p.43 / Chapter 2.2.3.7 --- Myocardial Antioxidant Capacity --- p.43 / Chapter 2.2.3.7.1 --- Myocardial Malondialdehyde (MDA) Content --- p.43 / Chapter 2.2.3.7.2 --- Myocardial Thiol Content --- p.44 / Chapter 2.2.3.7.3 --- Tert-Butylhydroperoxide (tBHP)-Induced Thiol Depletion --- p.45 / Chapter 2.2.3.7.4 --- TBHP-Induced Thiobarbituric Acid-Reactive Substances (TBARS) Formation --- p.45 / Chapter 2.2.4 --- Myocardial Ischemia-Reperfusion (IR) Injury --- p.46 / Chapter 2.2.4.1 --- Langendorff Isolated Perfused Rat Heart --- p.46 / Chapter 2.2.4.1.1 --- Preparation of Perfusion Buffer --- p.46 / Chapter 2.2.4.1.2 --- Preparation of Isolated Rat Heart --- p.47 / Chapter 2.2.4.1.3 --- Myocardial Global Ischemia-Reperfusion Injury --- p.49 / Chapter 2.2.4.1.4 --- Contractile Force Recovery --- p.49 / Chapter 2.2.5 --- Statistical Analysis --- p.50 / Chapter Chapter 3 --- Study of HK-18 on Anti-Tumor Effect / Chapter 3.1 --- In Vitro Study of HK-18 on Human Hepatoma Carcinoma Cell Line (HepG2) --- p.51 / Chapter 3.1.1 --- The Effect of HK-18 on Cell Proliferation of HepG2 Cells by MTT Assay --- p.52 / Chapter 3.1.2 --- DNA Fragmentation Assay --- p.54 / Chapter 3.1.3 --- The Effect of HK-18 on Cell Cycle Phase Distribution --- p.57 / Chapter 3.2 --- In Vivo Study of HK-18 on HepG2-Inoculated Nude Mice --- p.61 / Chapter 3.2.1 --- Assessment of the Anti-Tumor Activity of HK-18 --- p.61 / Chapter 3.2.2 --- The Effect of HK-18 Towards Heart Tissue --- p.65 / Chapter 3.2.3 --- In Vitro Study of HK-18 on Multidrug Resistant Cell Line (R-HepG2) --- p.68 / Chapter 3.2.4 --- The Comparison of the Cytotoxicity of DOX on the Parental Cells and Resistant Cells of HepG2 --- p.69 / Chapter 3.2.5 --- The Effect of HK-18 on Cell Proliferation of R-HepG2 Cells by MTT Assay --- p.72 / Chapter 3.2.6 --- DNA Fragmentation Assay --- p.74 / Chapter 3.2.7 --- The Effect of HK-18 on Cell Cycle Phase Distribution --- p.77 / Chapter 3.2.8 --- The Relationship Between HK-18 and P-glycoprotein --- p.80 / Chapter Chapter 4 --- Study of the Cardioprotective Effect of DI AO / Chapter 4.1 --- Myocardial Ischemia-Reperfusion (IR) Injury in Isolated- Perfused Rat Heart --- p.82 / Chapter 4.1.1 --- Time Course of Global Ischemia-Reperfusion-Induced LDH Leakage --- p.82 / Chapter 4.1.2 --- Effect of DI AO Pretreatment on Global IR Injury --- p.85 / Chapter 4.1.2.1 --- LDH Leakage --- p.85 / Chapter 4.1.2.2 --- Contractile Force --- p.87 / Chapter 4.2 --- Isoproterenol-Induced Myocardial Injury in Rats --- p.89 / Chapter 4.2.1 --- Effect of DI AO Pretreatment --- p.89 / Chapter 4.2.2 --- Alternations in the Activity of Myocardial Antioxidant Enzymes --- p.91 / Chapter 4.2.3 --- Alternations in Myocardial Antioxidant Capacity --- p.94 / Chapter Chapter 5 --- Discussion / Chapter 5.1 --- The Significance of the Study of Saponin in the Treatment of Liver Cancer and Heart Injury --- p.96 / Chapter 5.2 --- Effect of HK-18 on Human Hepatocellular Carcinoma Cell --- p.101 / Chapter 5.3 --- Mechanism Study of Anti-Tumor Effect of HK-18 --- p.102 / Chapter 5.4 --- Cytotoxicity of HK-18 Toward Normal Tissue --- p.105 / Chapter 5.5 --- Effect of HK-18 on Multidrug Resistant Human Hepatocellular Carcinoma / Chapter 5.6 --- Protective Effect of DI AO Against Isoproterenol (ISO)- Induced Myocardial Injury --- p.110 / Chapter 5.7 --- Cardioprotective Effect of DI AO Against Ischemia- Reperfusion (IR) Injury --- p.111 / Chapter 5.8 --- Effect of DI AO Pretreatment on Myocardial Antioxidant Enzymes Activities and Antioxidant Capacity --- p.113 / Chapter 5.9 --- Conclusion and Future Prospect --- p.117 / Chapter Chapter 6 --- References --- p.121
|
Page generated in 0.059 seconds