Spelling suggestions: "subject:"scale invariance"" "subject:"scale lnvariance""
11 |
Signatures of Unparticle Self-Interactions at the Large Hadron ColliderBergström, Johannes January 2009 (has links)
Unparticle physics is the physics of a hidden sector which is conformal in the infrared and coupled to the Standard Model. The concept of unparticle physics was introduced by Howard Georgi in 2007 and has since then received a lot of attention, including many studies of its phenomenology in different situations. After a review of the necessary background material, the implications of the self-interactions of the unparticle sector for LHC physics is studied. More specifically, analyses of four-body final states consisting of photons and leptons are performed. The results are upper bounds on the total cross sections as well as distributions of transverse momentum.
|
12 |
Object Recognition Using Scale-Invariant ChordiogramTonge, Ashwini 05 1900 (has links)
This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
|
13 |
Avalanches invariantes d’échelle dans un milieu granulaire modèle / Scale invariant avalanches in a granular mediumLherminier, Sébastien 25 November 2016 (has links)
Ce travail de thèse a pour objectif la reproduction et l'analyse du comportement invariant d'échelle, tel que l'on peut le trouver dans la nature et en particulier au niveau d'une faille tectonique. Pour cela, une expérience reproduisant la structure locale d'une faille par le cisaillement d'un milieu granulaire 2D a été montée et exploitée. L'utilisation de conditions aux limites périodiques dans cette expérience permet l'acquisition d'une statistique très riche, principal défaut des expériences présentes dans la littérature. Le suivi du système est effectué à la fois par des moyens optiques, mécaniques et acoustiques, ces derniers fournissant les informations les plus nombreuses et les plus précises. La dynamique a montré une invariance d'échelle compatible avec les lois statistiques existantes pour les tremblements de terre réels. Les corrélations entre les avalanches et entre les différents moyens de mesure sont analysées. Des expériences complémentaires ont été réalisées pour mieux comprendre les mécanismes à l'œuvre lors du déclenchement d'une avalanche et pendant son déroulement. La principale concerne la propagation d'une onde acoustique au sein d'un milieu granulaire, et a montré qu'une simple mesure de la vitesse de l'onde permet d'obtenir des informations sur la structure interne de l'empilement. L'utilisation d'un matériau photoélastique a permis, suite à une calibration adaptée, de sonder les forces locales au niveau des contacts entre grains et de voir l'évolution des réseaux de force dans le milieu au cours du cisaillement / The aim of this thesis is to reproduce and analyze the scale invariant behavior, as one can find in nature and in particular for a tectonic fault. Thus we set an experiment which reproduces the local structure of a fault thanks to a sheared 2D granular medium. The use of periodic boundaries in the experiment allows us to gain a very rich statistics, which was lacking in previous experiments presented in the literature. The system is monitored by three different methods: optical, mechanical and acoustics, which gives the most numerous and most precise informations. We observed scale invariant dynamics, consistent with statistical laws derived for real earthquakes. We also analyzed the correlations between avalanches and between the three monitoring methods. Additional experiments have been performed to better understand the mecanisms that take place at the triggering and during an avalanche. The main one focuses on sound wave propagation inside a granular pile, and we have shown that a mere velocity measure can give information about the internal structure of the pile. The use of a photoelastic material allows us (with appropriate calibration) to probe local forces at the edges and contacts of the grains and to see the evolution of force chains during the shear
|
14 |
A Hardware Architecture for Scale-space Extrema DetectionIjaz, Hamza January 2012 (has links)
Vision based object recognition and localization have been studied widely in recent years. Often the initial step in such tasks is detection of interest points from a grey-level image. The current state-of-the-art algorithms in this domain, like Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF) suffer from low execution speeds on a GPU(graphic processing unit) based system. Generally the performance of these algorithms on a GPU is below real-time due to high computational complexity and data intensive nature and results in elevated power consumption. Since real-time performance is desirable in many vision based applications, hardware based feature detection is an emerging solution that exploits inherent parallelism in such algorithms to achieve significant speed gains. The efficient utilization of resources still remains a challenge that directly effects the cost of hardware. This work proposes a novel hardware architecture for scale-space extrema detection part of the SIFT algorithm. The implementation of proposed architecture for Xilinx Virtex-4 FPGA and its evaluation are also presented. The implementation is sufficiently generic and can be adapted to different design parameters efficiently according to the requirements of application. The achieved system performance exceeds real-time requirements (30 frames per second) on a 640 x 480 image. Synthesis results show efficient resource utilization when compared with the existing known implementations.
|
15 |
Skaleninvarianz und deren Bedeutung für die Modellierung der Ermüdungsrißausbreitung in AluminiumlegierungenBergner, Frank 21 September 2004 (has links) (PDF)
Die Arbeit ruht auf zwei Säulen: Die eine besteht in der Aufbereitung, Erprobung und konsequenten Anwendung von Methoden der Skaleninvarianzanalyse, die andere in einem breiten Fundus an experimentellen Daten für aushärtbare Aluminiumknetlegierungen in der Form dünner Bleche, die unter gleichartigen, streng kontrollierten Bedingungen gewonnen worden sind. Als methodische Weiterentwicklungen sind die Fundierung des Umgangs mit der algebraischen Korrelation zwischen Vorfaktor und Exponent einer beliebigen Potenzgleichung, die Übertragung des Ansatzes der finiten Skaleninvarianz auf die Ermüdungsrißausbreitung sowie die Kombination der Idee eines geschwindigkeitsbestimmenden Schrittes mit der Dimensionsanalyse der umgebungsabhängigen Ermüdungsrißausbreitung bis hin zur Kartierung der geschwindigkeitsbestimmenden Schritte zu nennen. Auf experimenteller Seite wurde eine Datensammlung mit gemessenen Streubändern für die Ermüdungsrißausbreitung und das Verfestigungsverhalten von 39 Orientierungen bzw. Auslagerungszuständen von Aluminiumlegierungen aufgebaut. Diese Sammlung wird durch ausgewählte Messungen der Ermüdungsrißausbreitung im schwellenwertnahen Bereich, Restfestigkeitsversuche, Rißschließmessungen, Rauheitsmessungen an Bruchflächen, frequenzabhängige Messungen zum Umgebungseinfluß sowie Untersuchungen an drei Stählen und einer Magnesiumlegierung sinnvoll ergänzt. Auf der Basis der Meßdaten und der Analysemethoden wurde der Werkstoffeinfluß auf die Ermüdungsrißausbreitung in dünnen Blechen aus Aluminiumknetlegierungen bei Belastung mit konstanter Amplitude im Gültigkeitsbereich der linear-elastischen Bruchmechanik untersucht. Dabei wurden folgende Größen als wesentliche Einflußfaktoren identifiziert: - für die Gruppenzugehörigkeit: der Kohärenz- und Ordnungsgrad der festigkeitsbestimmenden Ausscheidungen und die resultierende Gleitverteilung, - für den gemeinsamen Vorfaktor der Legierungen der Gruppe 1: die elastischen Eigenschaften und das Spannungsverhältnis (Translation der Paris-Geraden), - für die Exponenten der Legierungen der Gruppe 1: 0,2%-Dehngrenze, athermischer Verfestigungsparameter, Probendicke und Kc-Wert als dimensionsloses Potenzprodukt (Rotation der Paris-Geraden), - für die Legierungen der Gruppe 2: das Ausmaß der Rißablenkung und eine bleibende Mode-II-Komponente der Rißöffnungsverschiebung, - für den Umgebungseinfluß der Legierung 6013 T6: Frequenz und Schwingbreite des Spannungsintensitätsfaktors. Die Diskussion umfaßt den wertenden Vergleich der experimentellen Ergebnisse mit Befunden und Modellen aus der Literatur, Erklärungsansätze für die Ursachen der Einflußnahme der wesentlichen Parameter sowie einen Modellansatz für die Legierungen der Gruppe 1 auf der Basis einer Mischungsregel. Dabei hatte sich erwiesen, daß keines der aus der Literatur bekannten Modelle alle Befunde richtig wiedergibt. Einige der ausgearbeiteten Erklärungsansätze bedürfen der zukünftigen Vertiefung. / The work is based upon two essentials: the first one is the preparation and application of techniques of scale invariance analysis, the second one consists in a database of experimental results for heat-treatable thin-sheet wrought aluminium alloys obtained under uniform conditions. Progress with respect to methodology was achieved regarding, first, the algebraic correlation between sets of coefficients and exponents of any power law, second, the transfer of the concept of finite scale invariance to the phenomenon of fatigue crack growth (FCG), and third, the combination of the ideas of a rate-controlling step and dimensional analysis of environmental-assisted FCG including the mapping of rate-controlling steps. In the experimental part, a database containing both measured scatterbands of FCG and strengthening characteristics for several orientations and aging conditions of aluminium alloys amounting to a total of 39 different material conditions was established. This database was supplemented with results of selected measurements of near-threshold FCG rates, residual strength, crack closure, roughness of fatigue cracks, and frequency-dependent environmental-assisted FCG as well as investigations of three plain-carbon steels and a magnesium alloy. Based on these prerequisites, the influence of the material on the FCG behaviour of thin-sheet wrought aluminium alloys under constant-amplitude loading was investigated within the limits of validity of linear-elastic fracture mechanics. The following influence factors were identified to be essential: The assignment of alloys to one out of two groups is mainly determined by the degrees of coherency and order of the strength-controlling precipitates and the resulting type of slip distribution. The normalized-Paris-law coefficient for the first group is mainly dependent on the modulus of elasticity and the stress ratio. The Paris-law exponents for the first group are dominated by a dimensionless power monomial of the 0.2% proof stress, the athermal strengthening coefficient, sheet thickeness and the critical stress intensity factor. The retardation of the FCG rates of alloys of the second group relative to the first group is mainly determined by the amount of crack deflection and by a residual mode-II component of crack opening displacement. Finally, the environment-assisted FCG for aluminium alloy 6013 T6 reveals a coupled dependence on loading frequency and cyclic stress intensity factor. The discussion covers the evaluation of the results in relation to observations and models from the literature, the explanation of the modes of operation of the major influence factors and a model based on a mixing rule for the alloys of the first group. It turned out that there is not any model that reflects all of the observations simultaneously. Some of the ideas presented require to be worked out in more detail.
|
16 |
Analyse statistique des processus de marche aléatoire multifractale / Statistical analysis of multifractal random walk processesDuvernet, Laurent 01 December 2010 (has links)
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les marches aléatoires multifractales. Une particularité remarquable de ces processus tient en leur propriété d'autosimilarité : la loi du processus à petite échelle est identique à celle à grande échelle moyennant un facteur aléatoire multiplicatif indépendant du processus. La première partie de la thèse se consacre à la question de la convergence du moment empirique de l'accroissement du processus dans une asymptotique assez générale, où le pas de l'accroissement peut tendre vers zéro en même temps que l'horizon d'observation tend vers l'infini. La deuxième partie propose une famille de tests non-paramétriques qui distinguent entre marches aléatoires multifractales et semi-martingales d'Itô. Après avoir montré la consistance de ces tests, on étudie leur comportement sur des données simulées. On construit dans la troisième partie un processus de marche aléatoire multifractale asymétrique tel que l'accroissement passé soit négativement corrélé avec le carré de l'accroissement futur. Ce type d'effet levier est notamment observé sur les prix d'actions et d'indices financiers. On compare les propriétés empiriques du processus obtenu avec des données réelles. La quatrième partie concerne l'estimation des paramètres du processus. On commence par montrer que sous certaines conditions, deux des trois paramètres ne peuvent être estimés. On étudie ensuite les performances théoriques et empiriques de différents estimateurs du troisième paramètre, le coefficient d'intermittence, dans un cas gaussien / We study some properties of a class of real-valued, continuous-time random processes, namely multifractal random walks. A striking feature of these processes lie in their scaling property : the distribution of the process at small scale is the same as the distribution at large scale, given some random multiplicative factor independent of the process. The first part of the dissertation deals with the convergence of the empirical moment of the increment of the process in a rather general asymptotic setting where the step of the increment may go to zero while the observation horizon may also go to infinity. In the second part, we propose a family of nonparametric tests that separate multifractal random walks from Itô semi-martingales. After showing the consistency of these tests, we study their behavior on simulations.In the third part, we build a skewed multifractal random walk process, such that the past increment is negatively correlated with the future squared increment. Such a "leverage effect" is notably seen on financial stock and index prices. We compare the empirical properties of this process with real data. The fourth part deals with the parametric estimation of the process. We first show that under certain conditions, one can not estimate two of the three parameters, even if the sample path is continuously observed on some interval. We next study the theoretical and empirical performances of some estimators of the third parameter, the intermittency coefficient, in a Gaussian case
|
17 |
The standard model to the Planck scaleAllison, Kyle F. January 2014 (has links)
The lack of direct evidence for physics beyond the SM at the LHC has led some to reevaluate the need for such physics to solve the hierarchy problem. Instead, the notion that the SM, or something like it, is valid up to the Planck scale and that technical naturalness is sufficient for solving the hierarchy problem has been suggested. This thesis examines minimal extensions of the SM that address its phenomenological and theoretical shortcomings while avoiding new physics between the electroweak and Planck scales that introduces a hierarchy problem. This thesis first studies two issues with the vMSM - an extension of the SM by three right-handed neutrinos - and their possible solutions. The first issue is the tension between dark matter production in the nuMSM and constraints from the Lyman-alpha forest data. To avoid this tension, the vMSM is extended by a Higgs singlet Φ and neutrino dark matter is produced through the decays of Φ rather than through left-right neutrino mixing. It is shown that the hierarchical parameters of this model can arise from symmetries broken at or near the Planck scale for two specific examples: one in which Φ stabilizes the electroweak vacuum and one in which Φ is a light inflaton. The second issue pertains to Higgs ξ-inflation. In the vMSM, a large non-minimal coupling ξ of the Higgs to gravity gives inflation but leads to a possible violation of perturbative unitarity below the inflationary scale. A study of Higgs ξ-inflation with M<sub>h</sub> ≃ 125-126 GeV, for which the Higgs self-coupling λ runs to small values near the Planck scale, is carried out. It is shown that small λ can significantly reduce ξ required for inflation, but ξ cannot be small enough to address the possible unitarity issue. For small λ, a new region of Higgs ξ-inflation with a large tensor-to-scalar ratio r that is consistent with BICEP2 is discovered. This thesis then studies the technical naturalness and cosmology of a model that addresses the strong CP problem. It is shown that a classically scale invariant DFSZ invisible aξon model with a Peccei-Quinn scalar S, whose couplings to the SM are ultra-weak, can solve the strong CP problem and generate electroweak symmetry breaking via the Coleman-Weinberg mechanism. The ultra-weak couplings of S are natural due to an underlying approξmate shift symmetry. The model contains a light pseudo-Goldstone dilaton that can be consistent with cosmological bounds while the aξon can be the dark matter of the universe. Finally, a summary of the thesis is presented and future research topics are suggested.
|
18 |
Chaos multiplicatif Gaussien, matrices aléatoires et applications / The theory of Gaussian multiplicative chaosAllez, Romain 23 November 2012 (has links)
Dans ce travail, nous nous sommes intéressés d'une part à la théorie du chaos multiplicatif Gaussien introduite par Kahane en 1985 et d'autre part à la théorie des matrices aléatoires dont les pionniers sont Wigner, Wishart et Dyson. La première partie de ce manuscrit contient une brève introduction à ces deux théories ainsi que les contributions personnelles de ce manuscrit expliquées rapidement. Les parties suivantes contiennent les textes des articles publiés [1], [2], [3], [4], [5] et pré-publiés [6], [7], [8] sur ces résultats dans lesquels le lecteur pourra trouver des développements plus détaillés / In this thesis, we are interested on the one hand in the theory of Gaussian multiplicative chaos introduced by Kahane in 1985 and on the other hand in random matrix theory whose pioneers are Wigner, Wishart and Dyson. The first part of this manuscript constitutes a brief introduction to those two theories and also contains the personal contributions of this work rapidly explained. The following parts contain the texts of the published articles [1], [2], [3], [4], [5] and pre-prints [6], [7], [8] on those results where the reader can find more detailed developments
|
19 |
Applications of the Extremal Functional Bootstrap / Aplicações do Bootstrap Funcional ExtremoMeinke, Alexander 13 November 2018 (has links)
The study of conformal symmetry is motivated through an example in statistical mechanics and then rigorously developed in quantum field theories in general spatial dimensions. In particular, primary fields are introduced as the fundamental objects of such theories and then studied in the formalism of radial quantization. The implications of conformal invariance on the functional form of correlation functions are studied in detail. Conformal blocks are defined and various approaches to their analytical and numerical calculation are presented with a special emphasis on the one-dimensional case. Building on these preliminaries, a modern formulation of the conformal bootstrap program and its various extensions are discussed. Examples are given in which bounds on the scaling dimensions in a one-dimensional theory are derived numerically. Using these results I motivate the technique of using the extremal functional bootstrap which I then develop in more detail. Many technical details are discussed and examples shown. After a brief discussion of conformal field theories with a boundary I apply numerical methods to find constraints on the spectrum of the 3D Ising model. Another application is presented in which I study the 4-point function on the boundary of a particular theory in Anti-de-Sitter space in order to approximate the mass spectrum of the theory. / O estudo da simetria conforme é motivado através de um exemplo em mecânica estatística e em seguida rigorosamente desenvolvido em teorias de campos quânticos em dimensões espaciais gerais. Em particular, os campos primários são introduzidos como os objetos fundamentais de tais teorias e então estudados através do formalismo de quantização radial. As implicações da invariância conforme na forma funcional das funções de correlação são estudadas em detalhe. Blocos conformes são definidos e várias abordagens para seu cálculo analítico e numérico são apresentadas com uma ênfase especial no caso unidimensional. Com base nessas preliminares, uma formulação moderna do programa de bootstrap conforme e suas várias extensões são discutidas. Exemplos são dados em que limites nas dimensões de escala em uma teoria unidimensional são derivados numericamente. Usando esses resultados, motivei a técnica de usar o bootstrap funcional extremo, que depois desenvolvo em mais detalhes. Diversos detalhes técnicos são discutidos e exemplos são apresentados. Após uma breve discussão das teorias de campo conformes com fronteiras, eu aplico métodos numéricos para encontrar restrições no espectro do modelo de Ising em 3D. Outra aplicação é apresentada em que eu estudo a função de 4 pontos na fronteira de uma teoria particular no espaço Anti-de-Sitter, a fim de aproximar o espectro de massa da teoria.
|
20 |
[en] THERMODYNAMIC NONEXTENSIVITY, DISCRETE SCALE INVARIANCE AND ELASTOPLASTICITY: A STUDY OF A SELF-ORGANIZED CRITICAL GEOMECHANICAL NUMERICAL MODEL / [pt] NÃO-EXTENSIVIDADE TERMODINÂMICA, INVARIÂNCIA DISCRETA DE ESCALA E ELASTO-PLASTICIDADE: ESTUDO NUMÉRICO DE UM MODELO GEOMECÂNICO AUTO-ORGANIZADO CRITICAMENTEARMANDO PRESTES DE MENEZES FILHO 02 December 2003 (has links)
[pt] Esta tese busca utilizar os novos conceitos físicos
relacionados à física do estado sólido e à mecânica
estatística - teoria do caos e geometria fractal - na
análise do comportamento de sistemas dinâmicos não-lineares.
Mais pormenorizadamente, trata-se de estudar o
comportamento de um modelo numérico elasto-plástico com
função de escoamento de Mohr-Coulomb, usualmente empregado
em simulações de materiais geológicos - cimentados ou
não -, quando submetido a carregamentos externos, situação
esta geralmente encontrada em problemas afeitos à mecânica
dos solos e das rochas (p/ex., estabilidade de taludes e
escavações subterrâneas). Mostra-se que tal modelo
geomecânico de muitos corpos (many-body) interagentes é
conduzido espontaneamente, ao longo de sua evolução
temporal, à chamada criticalidade auto-organizada (self-
organized criticality - SOC), estado caracterizado por
apresentar evolução na fronteira entre ordem e caos,
sensibilidade extrema a qualquer pequena perturbação, e
desenvolvimento de interações espaço-temporais de longo
alcance. Como a evolução de qualquer sistema dinâmico pode
ser vista como um fluxo ininterrupto de informações entre
suas partes constituintes, avaliou-se, para tal sistema, a
entropia de Tsallis, formulação original proposta pelo
físico brasileiro Constantino Tsallis, do Centro Brasileiro
de Pesquisas Físicas (CBPF), tendo se mostrado adequada à
sua descrição. Em especial, determinou-se para tal sistema,
pela primeira vez, o valor do índice entrópico, que
parametriza a aludida forma entrópica alternativa. Ademais,
como é característico de sistemas fora do equilíbrio
regidos por uma dinâmica de limiar, mostra-se que tal
sistema geomecânico, durante o seu desenvolvimento, teve a
sua simetria translacional inicial quebrada, sendo
substituída pela simetria por escala, auto-semelhante
(i.é., fractal). Em decorrência, o modelo exibe a chamada
invariância discreta de escala (discrete scale invariance -
DSI), fruto do processo mesmo de ruptura progressiva do
material heterogêneo. Especificamente, as simulações
numéricas sugeriram que o processo de ruptura progressiva
do material elasto-plástico se dá por uma transferência
multiplicativa de tensões, em diferentes escalas de
observação hierarquicamente dispostas, acarretando o
aparecimento de sinais bastante peculiares, caracterizados
por desvios oscilatórios sistemáticos do padrão em lei de
potência, o que possibilita a previsão de sua ruína, quando
ainda em fase preparatória. Assim, esta pesquisa mostrou a
eficiência de tal método de previsão, aplicado, pela
primeira vez, não somente aos resultados das simulações
numéricas do referido modelo geomecânico, como aos ensaios
de laboratório em rochas sedimentares, realizados no Centro
de Pesquisas da Petrobrás (CENPES). Por fim, é interessante
assinalar que o material elasto-plástico investigado neste
trabalho teve seu comportamento compartilhado por um modelo
matemático bastante simples, fundamentado na função
binomial multifractal, reconhecida por descrever processos
multiplicativos em diferentes escalas. / [en] This thesis aims at applying new concepts from solid state
physics and statistical mechanics - chaos theory and
fractal geometry - to the study of nonlinear dynamic
systems. More precisely, it deals with a two-dimensional
continuum elastoplastic Mohr-Coulomb model, commonly used
to simulate pressure-sensitive materials (e.g., soils,
rocks and concrete) subjected to stress-strain fields,
normally found in general soil or rock mechanics problems
(e.g., slope stability and underground excavations).
It is shown that such many-body system is spontaneously
driven to a state at the edge of chaos, called self-
organized criticality (SOC), capable of developing long-
range interactions in space and long-range memory in time.
A new entropic form proposed by C. Tsallis is presented and
shown that it is the suitable theoretical framework to deal
with these problems. Furthermore, the index q of the
Tsallis entropy, which measures the degree of non-
additivity of the system, is calculated, for the first
time, for an elastoplastic model. In addition, as is usual
in non-equilibrium systems with threshold dynamics, the
model changes its symmetry, from translational to fractal
(that is, self-similar), leading to what is called discrete
scale invariance. It is shown that this special type of
scale invariance, characterized by systematic oscillatory
deviations from the fundamental power-law behavior, can
be used to predict the failure of heterogeneous materials,
while the process is still being build-up, i.e., from
precursory signals, typical of progressive failure
processes. Specifically, this framework was applied, for
the first time, not only to the elastoplastic geomechanical
model, but to laboratory tests in sedimentary rocks as
well. Finally, it is interesting to realize that the above-
mentioned behaviors are also displayed by the binomial
multifractal function, known to adequately describe
multiplicative cascading processes.
|
Page generated in 0.0642 seconds