• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 13
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations

Tröltzsch, Fredi 30 October 1998 (has links) (PDF)
A class of Lagrange-Newton-SQP methods is investigated for optimal control problems governed by semilinear parabolic initial- boundary value problems. Distributed and boundary controls are given, restricted by pointwise upper and lower bounds. The convergence of the method is discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality condition for the reference solution, local quadratic convergence is proved. The proof is based on the theory of Newton methods for generalized equations in Banach spaces.
22

Otimização de materiais constituídos de células treliçadas com restrições de isotropia para aplicações termomecânicas / Optimization of lattice cells materials aiming at thermomechanical applications including isotropy constraints

Guth, Danilo Colletta 24 August 2012 (has links)
Made available in DSpace on 2016-12-08T17:19:19Z (GMT). No. of bitstreams: 1 Danilo Guth.pdf: 5524444 bytes, checksum: 0d000481efd76a74f714599b9ac7f404 (MD5) Previous issue date: 2012-08-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Inspirados por materiais encontrados na natureza, pesquisadores têm estudado a utilização de materiais celulares em diversas aplicações como biomedicina, engenharia aeroespacial e militar. O ganho em relação ao material base é a excelente relação entre peso e propriedades diversas como: rigidez ao cisalhamento; condutividade térmica/elétrica; absorção de impacto, ruído e vibrações. Uma classe específica são os materiais constituídos por células treliçadas. Estes possuem estrutura periódica, formada por células-base constituídas de barras distribuídas espacialmente no domínio da célula. Modernos processos de fabricação vêm viabilizando a confecção das células em escalas micro e nanométricas. Técnicas para obtenção de novas configurações são objeto de diversos estudos que buscam obter estruturas ótimas para uma dada função multiobjetivo. O presente trabalho implementa o uso de programação quadrática sequencial para a obtenção de células-base otimizadas para funções termomecânicas incluindo a maximização do módulo de cisalhamento, módulo volumétrico, coeficiente de Poisson e condutividade térmica, permitindo a inclusão de restrições de isotropia. A determinação das propriedades macroscópicas é obtida através do método da homogeneização. Diversos resultados são obtidos para os casos bidimensional e tridimensional.
23

Optimisation and control methodologies for large-scale and multi-scale systems

Bonis, Ioannis January 2011 (has links)
Distributed parameter systems (DPS) comprise an important class of engineering systems ranging from "traditional" such as tubular reactors, to cutting edge processes such as nano-scale coatings. DPS have been studied extensively and significant advances have been noted, enabling their accurate simulation. To this end a variety of tools have been developed. However, extending these advances for systems design is not a trivial task . Rigorous design and operation policies entail systematic procedures for optimisation and control. These tasks are "upper-level" and utilize existing models and simulators. The higher the accuracy of the underlying models, the more the design procedure benefits. However, employing such models in the context of conventional algorithms may lead to inefficient formulations. The optimisation and control of DPS is a challenging task. These systems are typically discretised over a computational mesh, leading to large-scale problems. Handling the resulting large-scale systems may prove to be an intimidating task and requires special methodologies. Furthermore, it is often the case that the underlying physical phenomena span various temporal and spatial scales, thus complicating the analysis. Stiffness may also potentially be exhibited in the (nonlinear) models of such phenomena. The objective of this work is to design reliable and practical procedures for the optimisation and control of DPS. It has been observed in many systems of engineering interest that although they are described by infinite-dimensional Partial Differential Equations (PDEs) resulting in large discretisation problems, their behaviour has a finite number of significant components , as a result of their dissipative nature. This property has been exploited in various systematic model reduction techniques. Of key importance in this work is the identification of a low-dimensional dominant subspace for the system. This subspace is heuristically found to correspond to part of the eigenspectrum of the system and can therefore be identified efficiently using iterative matrix-free techniques. In this light, only low-dimensional Jacobians and Hessian matrices are involved in the formulation of the proposed algorithms, which are projections of the original matrices onto appropriate low-dimensional subspaces, computed efficiently with directional perturbations.The optimisation algorithm presented employs a 2-step projection scheme, firstly onto the dominant subspace of the system (corresponding to the right-most eigenvalues of the linearised system) and secondly onto the subspace of decision variables. This algorithm is inspired by reduced Hessian Sequential Quadratic Programming methods and therefore locates a local optimum of the nonlinear programming problem given by solving a sequence of reduced quadratic programming (QP) subproblems . This optimisation algorithm is appropriate for systems with a relatively small number of decision variables. Inequality constraints can be accommodated following a penalty-based strategy which aggregates all constraints using an appropriate function , or by employing a partial reduction technique in which only equality constraints are considered for the reduction and the inequalities are linearised and passed on to the QP subproblem . The control algorithm presented is based on the online adaptive construction of low-order linear models used in the context of a linear Model Predictive Control (MPC) algorithm , in which the discrete-time state-space model is recomputed at every sampling time in a receding horizon fashion. Successive linearisation around the current state on the closed-loop trajectory is combined with model reduction, resulting in an efficient procedure for the computation of reduced linearised models, projected onto the dominant subspace of the system. In this case, this subspace corresponds to the eigenvalues of largest magnitude of the discretised dynamical system. Control actions are computed from low-order QP problems solved efficiently online.The optimisation and control algorithms presented may employ input/output simulators (such as commercial packages) extending their use to upper-level tasks. They are also suitable for systems governed by microscopic rules, the equations of which do not exist in closed form. Illustrative case studies are presented, based on tubular reactor models, which exhibit rich parametric behaviour.
24

Parameter identification problems for elastic large deformations - Part I: model and solution of the inverse problem

Meyer, Marcus 20 November 2009 (has links)
In this paper we discuss the identification of parameter functions in material models for elastic large deformations. A model of the the forward problem is given, where the displacement of a deformed material is found as the solution of a n onlinear PDE. Here, the crucial point is the definition of the 2nd Piola-Kirchhoff stress tensor by using several material laws including a number of material parameters. In the main part of the paper we consider the identification of such parameters from measured displacements, where the inverse problem is given as an optimal control problem. We introduce a solution of the identification problem with Lagrange and SQP methods. The presented algorithm is applied to linear elastic material with large deformations.
25

Application of Bennett mechanisms to long-span shelters

Melin, Nicholas O'Brien January 2004 (has links)
Rapidly assembled tent structures are temporary enclosures used to house people or goods. Their uses vary to include recreation, refugee housing, and military shelters. The structural concepts applied in these shelters are as variable as their uses. Some make use of a tensioned fabric and pole system to provide structural strength. Others have a load-bearing frame with attached fabric skin. Further variants make use of inflatable arches or consist of modular containers. Analysis of a number of different types of rapidly assembled tent structures reveals an area where innovation can occur. Conflicts in the last ten years suggest that rapidly assembled shelters for both military purposes and humanitarian relief have the greatest need for innovative solutions. Existing shelters used by the military lack the versatility and speed of deployment necessary in modern conflict. The lack of scalability in the designs makes it difficult to use an existing tent in different situations. They are slow to construct, heavy, and difficult to transport in large numbers. These problems suggest that there is a need for new shelters that better meet the needs of the military. The application of deployable structures technology meets military's needs for structures with the advantages of a small compacted volume, rapid assembly, and ease of deployment. This makes them ideal for application to shelter structures. The aim of this dissertation was to develop a new type of deployable, long-span shelter frame based upon tiled Bennett mechanisms. An overlapping combination of equilateral Bennett mechanisms yields a structure that opens into a half-cylinder shape, providing an enclosed space useful and applicable to the problem of deployable shelters. The specific application considered in the design portion of this process will be a long-span deployable shelter capable of housing military helicopters. This report details the development of the Bennett Shelter concept. Its deployed and compacted geometries are explored, and a procedure for determining structural properties and dimensions is presented. The full concept for the structure, from outer covering to foundation support is then detailed. Loads affecting the structure are determined, and the process of modelling and analysing the structure is then considered. Optimisation of the structure with respect to weight and serviceability requirements is conducted using a number of different materials, and full analysis of the optimal geometries is completed. As no method exists for evaluating the effect of imperfections on the deployment of overconstrained mechanisms, a procedure is derived. The effects of manufacturing imperfections on deployment of the Bennett mechanism are then explored using the method. A full examination of the variation of energy within the Bennett Shelter during deployment provides valuable insight into the performance of the structure. With the above analysis complete, it is shown that the Bennett Shelter is viable as a long-span deployable shelter.
26

Optimisation de la qualité vibro-acoustique des structures d'automobiles pour les basses fréquences

Bourmich, Sophie 21 September 2012 (has links)
Les modèles d'éléments finis des automobiles donnent des grandes tailles de problèmes matriciels, ce qui demeure coûteux en ressources numériques pour une procédure d'optimisation. La multiplicité des phénomènes couplés du problème d'interaction de l'air de l'habitacle et de la superstructure rend plus sensible, à des variations mineures des paramètres, une optimisation directe du véhicule. Pour réduire les temps de calculs et l'espace mémoire liés à la simulation numérique en éléments finis, une méthode de double synthèse modale est appliquée sur la structure et le fluide. Ceci permet de diminuer le nombre de degrés de liberté de frontière. Egalement, un algorithme a été développé pour minimiser le nombre d'évaluations de fonction au cours des itérations d'optimisation. L'approche modale permet également de décomposer le problème d'optimisation de la réponse vibro-acoustique par des sous-problèmes couplés d'optimisation de critères modaux. Ces critères modaux explicitent les couplages fréquentiels par des termes d'amplification et les couplages spatiaux par des paramètres effectifs modaux. Ils favorisent ainsi le développement d'une stratégie d'optimisation robuste par le contrôle modal des effets prépondérants sur la qualité vibro-acoustique des véhicules. / Finite element models and the complexity of vehicle passenger compartments make it harder the optimization, mainly because of expensive computing resources and multiple coupled phenomena of fluid-structure problems. Strategies to improve time and memory performance consist in the use of reduction methods, and combined with efficient optimization techniques, vibro-acoustic solutions of better quality can be performed. The complexity of the system is taken into account thanks to a hierarchical optimization process. Both reduction method and gradient-based optimization algorithm are investigated. Based on modal synthesis, special criteria help to determine critical vibration propagation paths. A modified SQP (Sequential Quadratic Programming) algorithm is also developed in order to provide a faster convergence speed. Such process is to be applied on an academic example and hollow parts and panels of a whole passenger compartments. It allows to find relevant and non obvious solutions by minimizing noise and vibration transfer functions in a relatively wide range of frequencies.
27

On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations

Tröltzsch, Fredi 30 October 1998 (has links)
A class of Lagrange-Newton-SQP methods is investigated for optimal control problems governed by semilinear parabolic initial- boundary value problems. Distributed and boundary controls are given, restricted by pointwise upper and lower bounds. The convergence of the method is discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality condition for the reference solution, local quadratic convergence is proved. The proof is based on the theory of Newton methods for generalized equations in Banach spaces.
28

Development and Implementation of Rotorcraft Preliminary Design Methodology using Multidisciplinary Design Optimization

Khalid, Adeel S. 14 November 2006 (has links)
A formal framework is developed and implemented in this research for preliminary rotorcraft design using IPPD methodology. All the technical aspects of design are considered including the vehicle engineering, dynamic analysis, stability and control, aerodynamic performance, propulsion, transmission design, weight and balance, noise analysis and economic analysis. The design loop starts with a detailed analysis of requirements. A baseline is selected and upgrade targets are identified depending on the mission requirements. An Overall Evaluation Criterion (OEC) is developed that is used to measure the goodness of the design or to compare the design with competitors. The requirements analysis and baseline upgrade targets lead to the initial sizing and performance estimation of the new design. The digital information is then passed to disciplinary experts. This is where the detailed disciplinary analyses are performed. Information is transferred from one discipline to another as the design loop is iterated. To coordinate all the disciplines in the product development cycle, Multidisciplinary Design Optimization (MDO) techniques e.g. All At Once (AAO) and Collaborative Optimization (CO) are suggested. The methodology is implemented on a Light Turbine Training Helicopter (LTTH) design. Detailed disciplinary analyses are integrated through a common platform for efficient and centralized transfer of design information from one discipline to another in a collaborative manner. Several disciplinary and system level optimization problems are solved. After all the constraints of a multidisciplinary problem have been satisfied and an optimal design has been obtained, it is compared with the initial baseline, using the earlier developed OEC, to measure the level of improvement achieved. Finally a digital preliminary design is proposed. The proposed design methodology provides an automated design framework, facilitates parallel design by removing disciplinary interdependency, current and updated information is made available to all disciplines at all times of the design through a central collaborative repository, overall design time is reduced and an optimized design is achieved.
29

Otimização de estruturas reticuladas planas com comportamento geometricamente não linear / Optimization of plane frame structures with behavior geometrically nonlinear

ASSIS, Lilian Pureza de 20 October 2006 (has links)
Made available in DSpace on 2014-07-29T15:03:39Z (GMT). No. of bitstreams: 1 lilian pureza.pdf: 2774999 bytes, checksum: 2a074d04ee02c7e1c87fdbe8c2c68ef6 (MD5) Previous issue date: 2006-10-20 / The aim of this work is to present a formulation and corresponding computational implementation for sizing optimization of plane frames and cable-stayed columns considering geometric non liner behavior. The structural analysis is based on the finite element method using the updated lagrangian approach for plane frame and cable elements, which are represented by plane truss elements. The non linear system is solved by the Newton-Raphson method coupled to load increment strategies such as the arch length method and the generalized displacement parameter method, which allow the algorithm to transpose any critical point that happen to appear along the equilibrium path. In the optimization process the design variables are the heights of the crosssection of the frame elements, the objective function represents the volume of the structure and the constraints impose limits to displacements and critical load. Lateral constraints impose limits to the design variables. The finite difference method is used in the sensitivity analysis of the displacement and critical load constraints. The optimization process is carried out using three different optimization strategies: the sequential quadratic programming algorithm; the interior points algorithm; and the branch and bound method. Some numerical experiments are carried out so as to test the analysis and the sensitivity strategies. Numerical experiments are presented to show the validity of the implementation presented in this dissertation. / O objetivo deste trabalho é a otimização de dimensões de pórticos planos e de colunas estaiadas planas pela minimização do volume da estrutura, considerando os efeitos da não-linearidade geométrica em seu comportamento. A formulação utiliza, para análise das estruturas, elementos finitos de pórtico e de treliça planos e referencial lagrangeano atualizado. O método de Newton-Raphson foi utilizado como estratégia para solução do sistema de equações não lineares. Foram acopladas estratégias especiais para ultrapassagem de pontos críticos que possam existir ao longo da trajetória de equilíbrio, tais como o comprimento de arco cilíndrico e o controle dos deslocamentos generalizados. Na otimização, as variáveis de projeto são as alturas das seções transversais dos elementos, a função objetivo é o volume do material e as restrições dizem respeito a limitações impostas a deslocamentos e à carga limite, além de limitações impostas aos valores das variáveis. A sensibilidade da função objetivo foi obtida por diferenciação direta e a sensibilidade das restrições pelo método das diferenças finitas. Foram utilizados o algoritmo de programação quadrática seqüencial, PQS, o algoritmo de pontos interiores, PI, e o algoritmo de Branch and Bound, B&B. São apresentados exemplos de validação das estratégias de análise não linear e da análise de sensibilidade, além dos exemplos de validação da formulação empregada para a otimização resolvidos pelos métodos implementados.
30

Space-time constellation and precoder design under channel estimation errors

Yadav, A. (Animesh) 08 October 2013 (has links)
Abstract Multiple-input multiple-output transmitted signal design for the partially coherent Rayleigh fading channels with discrete inputs under a given average transmit power constraint is consider in this thesis. The objective is to design the space-time constellations and linear precoders to adapt to the degradation caused by the imperfect channel estimation at the receiver and the transmit-receive antenna correlation. The system is partially coherent so that the multiple-input multiple-output channel coefficients are estimated at the receiver and its error covariance matrix is fed back to the transmitter. Two constellation design criteria, one for the single and another for the multiple transmit antennae are proposed. An upper bound on the average bit error probability for the single transmit antenna and cutoff rate, i.e., a lower bound on the mutual information, for multiple transmit antennae are derived. Both criteria are functions of channel estimation error covariance matrix. The designed constellations are called as partially coherent constellation. Additionally, to use the resulting constellations together with forward error control codes requires efficient bit mapping schemes. Because these constellations lack geometrical symmetry in general, the Gray mapping is not always possible in the majority of the constellations obtained. Moreover, different mapping schemes may lead to highly different bit error rate performances. Thus, an efficient bit mapping algorithm called the modified binary switching algorithm is proposed. It minimizes an upper bound on the average bit error probability. It is shown through computer simulations that the designed partially coherent constellation and their optimized bit mapping algorithm together with turbo codes outperform the conventional constellations. Linear precoder design was also considered as a simpler, suboptimal alternative. The cutoff rate expression is again used as a criterion to design the linear precoder. A linear precoder is obtained by numerically maximizing the cutoff rate with respect to the precoder matrix with a given average transmit power constraint. Furthermore, the precoder matrix is decomposed using singular-value-decomposition into the input shaping, power loading, and beamforming matrices. The beamforming matrix is found to coincide with the eigenvectors of the transmit correlation matrix. The power loading and input shaping matrices are solved numerically using the difference of convex functions programming algorithm and optimization under the unitary constraint, respectively. Computer simulations show that the performance gains of the designed precoders are significant compared to the cutoff rate optimized partially coherent constellations without precoding. / Tiivistelmä Väitöskirjassa tarkastellaan lähetyssignaalien suunnittelua osittain koherenteissa Rayleigh-häipyvissä kanavissa toimiviin monitulo-monilähtöjärjestelmiin (MIMO). Lähettimen keskimääräinen lähetysteho oletetaan rajoitetuksi ja lähetyssignaali diskreetiksi. Tavoitteena on suunnitella tila-aikakonstellaatioita ja lineaarisia esikoodereita jotka mukautuvat epätäydellisen kanavaestimoinnin aiheuttamaan suorituskyvyn heikkenemiseen sekä lähetin- ja vastaanotinantennien väliseen korrelaatioon. Tarkasteltavien järjestelmien osittainen koherenttisuus tarkoittaa sitä, että MIMO-kanavan kanavakertoimet estimoidaan vastaanottimessa, josta niiden virhekovarianssimatriisi lähetetään lähettimelle. Työssä esitetään kaksi konstellaatiosuunnittelukriteeriä, toinen yhdelle lähetinantennille ja toinen moniantennilähettimelle. Molemmat kriteerit ovat kanavan estimaatiovirheen kovarianssimatriisin funktioita. Työssä johdetaan yläraja keskimääräiselle bittivirhetodennäköisyydelle yhden lähetinantennin tapauksessa sekä rajanopeus (cutoff rate), joka on alaraja keskinäisinformaatiolle, usean lähetinantennin tapauksessa. Konstellaatioiden käyttö yhdessä virheenkorjauskoodien kanssa edellyttää tehokaita menetelmiä, joilla bitit kuvataan konstellaatiopisteisiin. Koska tarvittavat konstellaatiot eivät ole tyypillisesti geometrisesti symmetrisiä, Gray-kuvaus ei ole yleensä mahdollinen.Lisäksi erilaiset kuvausmenetelmät voivat johtaa täysin erilaisiin bittivirhesuhteisiin. Tästä johtuen työssä esitetään uusi kuvausalgoritmi (modified bit switching algorithm), joka minimoi keskimääräisen bittivirhetodennäköisyyden ylärajan. Simulointitulokset osoittavat, että työssä kehitetyt konstellaatiot antavat paremman suorituskyvyn turbokoodatuissa järjestelmissä kuin perinteiset konstellaatiot. Työssä tarkastellaan myös lineaarista esikoodausta yksinkertaisena, alioptimaalisena vaihtoehtona uusille konstellaatioille. Esikoodauksen suunnittelussa käytetään samaa kriteeriä kuin konstellaatioiden kehityksessä eli rajanopeutta. Lineaarinen esikooderi löydetään numeerisesti maksimoimalla rajanopeus kun rajoitusehtona on lähetysteho. Esikoodausmatriisi hajotetaan singulaariarvohajotelmaa käyttäen esisuodatus, tehoallokaatio ja keilanmuodostusmatriiseiksi, jonka havaitaan vastaavan lähetyskorrelaatiomatriisin ominaisvektoreita. Tehoallokaatiomatriisi ratkaistaan numeerisesti käyttäen difference of convex functions -optimointia ja esisuodatusmatriisi optimoinnilla unitaarista rajoitusehtoa käyttäen. Simulaatiotulokset osoittavat uusien esikoodereiden tarjoavan merkittävän suorituskykyedun sellaisiin rajanopeusoptimoituihin osittain koherentteihin konstellaatioihin nähden, jotka eivät käytä esikoodausta.

Page generated in 0.5653 seconds