• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 25
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 205
  • 205
  • 50
  • 31
  • 28
  • 24
  • 21
  • 15
  • 15
  • 15
  • 15
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The development of an in vitro flow simulation device to study the effects of arterial shear stress profiles on endothelial cells

Coleman, Sarah Elizabeth. January 2005 (has links)
Thesis (M. S.)--Biomedical Engineering, Georgia Institute of Technology, 2006. / Hanjoong Jo, Ph.D., Committee Chair ; Don P. Giddens, Ph.D., Committee Member ; W. Robert Taylor, M.D., Ph.D., Committee Member ; Ajit Yoganathan, Ph.D., Committee Member.
72

Kinetic study of E-selectin-mediated adhesion under flow

Wayman, Annica M. January 2006 (has links)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / Giddens, Don P., Committee Co-Chair ; Zhu, Cheng, Committee Chair ; Garcia, Andres J., Committee Member ; Smith, Marc K., Committee Member ; McEver, Rodger P., Committee Member.
73

Shear and convective turbulence in a model of thermohaline intrusions /

Mueller, Rachael D. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 43-45). Also available on the World Wide Web.
74

The stability of turbulent exchange flows in shallow waters /

Alavian, Vedad January 1984 (has links)
No description available.
75

A parametric study of the hydrodynamic stability theory of 3-D compressible free shear flows

King, Peter Samuel 10 October 2005 (has links)
In this study, a new and efficient numerical algorithm is developed to solve both the two-dimensional and three-dimensional compressible hydrodynamic stability problem. A parametric study of free shear flows with two or more supersonic streams is performed. Flows examined included shear layers, jets/wakes, and various geometrical combinations of these flows. The effect of Mach number on the stability characteristics of the flow is studied and found to confirm the work of other researchers who found that increasing the relative (or convective) Mach number increases the stability of the flow. For 2-D mean flows, the most amplified disturbance is shown to be axial for M<1.2 and fully three-dimensional for M> 1.2. Disturbances for three-dimensional mean flows are found here to be axial in the presence of side walls. The variation of the eigenfunctions and flow field disturbances as a function of Mach number and the flow geometry was also studied. Comparisons of the stability code results are also made to several turbulent mixing experiments. The stability code correctly predicts which parameters will accelerate mixing. New correlations of the effects of some important parameters on stability are developed. / Ph. D.
76

Statics, Dynamics, and Rheological properties of Micellar solutions by Computer Simulation

Huang, Chien-Cheng 13 September 2007 (has links)
Statics, dynamics, rheology and scission-recombination kinetics of self-assembling linear micelles are investigated at equlibrium state and under shear flow by computer simulations using a newly proposed mesoscopic model. We model the micelles as linear sequences of Brownian beads whose space-time evolution is governed by Langevin dynamics. A Monte Carlo algorithm controls the opening of a bond or the chain-end fusion. A kinetic parameter omega modelling the effect of a potential barrier along a kinetic path, is introduced in our model. For equilibrium state we focus on the analysis of short and long time behaviors of the scission and recombination mechanisms. Our results show that at time scales larger than the life time of the average chain length, the kinetics is in agreement with the mean-field kinetics model of Cates. By studying macroscopic relaxation phenomena such as the average micelle length evolution after a T-jump, the monomer diffusion, and the zero shear relaxation function, we confirm that the effective kinetic constants found are indeed the relevant parameters when macroscopic relaxation is coupled to the kinetics of micelles. For the non-equilibrium situation, we study the coupled effects of the shear flow and the scission-recombination kinetics, on the structural and rheological properties of this micellar system. Our study is performed in semi-dilute and dynamically unentangled regime conditions. The explored parameter omega range is chosen in order for the life time of the average size chain to remain shorter than its intrinsic (Rouse) longest relaxation time. Central to our analysis is the concept of dynamical unit of size Lambda, the chain fragment for which the life time tau_Lambda and the Rouse time are equal. Shear thinning, chain gyration tensor anisotropy, chain orientation and bond stretching are found to depend upon the reduced shear rate Beta_Lambda=gamma dot*tau_Lambda while the average micelle size is found to decrease with increasing shear rate, independently of the height of the barrier of the scission-recombination process.
77

NUMERICAL SIMULATION OF NONLINEAR WAVES IN FREE SHEAR LAYERS (MIXING, COMPUTATIONAL, FLUID DYNAMICS, HYDRODYNAMIC STABILITY, SPATIAL, FLUID FLOW MODEL).

PRUETT, CHARLES DAVID. January 1986 (has links)
A numerical model has been developed which simulates the three-dimensional stability and transition of a periodically forced free shear layer in an incompressible fluid. Unlike previous simulations of temporally evolving shear layers, the current simulations examine spatial stability. The spatial model accommodates features of free shear flow, observed in experiments, which in the temporal model are precluded by the assumption of streamwise periodicity; e.g., divergence of the mean flow and wave dispersion. The Navier-Stokes equations in vorticity-velocity form are integrated using a combination of numerical methods tailored to the physical problem. A spectral method is adopted in the spanwise dimension in which the flow variables, assumed to be periodic, are approximated by finite Fourier series. In complex Fourier space, the governing equations are spatially two-dimensional. Standard central finite differences are exploited in the remaining two spatial dimensions. For computational efficiency, time evolution is accomplished by a combination of implicit and explicit methods. Linear diffusion terms are advanced by an Alternating Direction Implicit/Crank-Nicolson scheme whereas the Adams-Bashforth method is applied to convection terms. Nonlinear terms are evaluated at each new time level by the pseudospectral (collocation) method. Solutions to the velocity equations, which are elliptic, are obtained iteratively by approximate factorization. The spatial model requires that inflow-outflow boundary conditions be prescribed. Inflow conditions are derived from a similarity solution for the mean inflow profile onto which periodic forcing is superimposed. Forcing functions are derived from inviscid linear stability theory. A numerical test case is selected which closely parallels a well-known physical experiment. Many of the aspects of forced shear layer behavior observed in the physical experiment are captured by the spatial simulation. These include initial linear growth of the fundamental, vorticity roll-up, fundamental saturation, eventual domination of the subharmonic, vortex pairing, emergence of streamwise vorticity, and temporary stabilization of the secondary instability. Moreover, the spatial simulation predicts the experimentally observed superlinear growth of harmonics at rates 1.5 times that of the fundamental. Superlinear growth rates suggest nonlinear resonances between fundamental and harmonic modes which are not captured by temporal simulations.
78

Hydroelastic instabilities of compliant panels

Cafolla, Gerard James January 1997 (has links)
No description available.
79

Asymptotic and numerical solutions of trapped Rossby waves in high-latitude shear flows with boundaries

Harlander, Uwe 28 November 2016 (has links) (PDF)
We consider the amplitudes of coastally trapped Rossby waves in a high-latitude shear flow on a modified ß-plane, where also the effect of the sphericity of the earth (c5-effect) is taken into account. We present a particular analytical solution and also asymptotic and numerical solutions. We find that the asymptotic WKB solutions are accurate compared to the numerical results. We show that the o-effect is most important for shorter waves and leads to an enhanced selection of trapped Rossby wave modes. / Wir betrachten die Amplituden von küstennah gefangenen Rossby-Wellen in einer Scherströmung hoher Breiten. Die Rechnungen werden auf einer modifizierten ß-Ebene durchgeführt, die auch die Spherizität der Erde berücksichtigt (o-Effekt). Wir zeigen eine spezielle analytische Lösung und auch asymptotische und numerische Lösungen. Die asymptotischen WKB-Lösungen erweisen sich als genau, verglichen mit den numerischen Resultaten. Der o-Effekt wirkt sich a stärksten bei den sehr langen und den kurzen Wellen aus und führt zu einer stärkeren Selektion von Moden gefangener Rossby-Wellen.
80

Experimental Investigation of Bubble Lateral Motion in Shear Flow

Ke Tang (5930894) 03 January 2019 (has links)
In two-phase flow, the void fraction and its distribution are two major factors describing the characteristic of flow patterns. Better understanding of void fraction distribution in two-phase flow would help improve safety and efficiency in the nuclear industry as the heat transfer process is significantly affected by the void distribution in nuclear reactor fuel bundles. Lift force is proposed to explain the lateral migration of bubbles in the shear flow (Feng & Bolotnov, 2017, Lucas & Tomiyama, 2011, Akio Tomiyama, Tamai, Zun, & Hosokawa, 2002). However, the mechanism of lift force is unclear and the research on lift force is limited.<div><br></div><div>An experimental investigation is performed on the lift force of single bubble in weak linear shear flow field in water. In addition, characteristics of bubble motion including bubble terminal velocity, aspect ratio and oscillation amplitude are studied and comparisons are made with existing models.<br></div><div><br></div><div>It was found that the model proposed by Tomiyama et al. (A. Tomiyama, Celata, Hosokawa, & Yoshida, 2002) has the best prediction of bubble terminal velocity with introduction of a tuning factor in consideration of the asymmetric deformation of bubble. Bubble aspect ratio is found to significantly affect its terminal velocity, and a new model is proposed to best fit the experiment data. It is also observed that the shear rate magnitude has no influence on bubble aspect ratio in this study. Oscillation was observed for all the bubbles in this experiment. Oscillation amplitude scattered widely and it was difficult to correlate it only with the bubble equivalent diameter. In terms of lift force, positive lift coefficient was observed for small size bubbles and transits to negative value with growing size. Due to the high Reynolds number of flow and low viscosity of water, widely scattered data is found in the results. Although the accurate prediction of lift coefficient is difficult to obtain in the experiment, the lift coefficient transition trend is given and agrees with many other research. In addition, this research provides a database for further lift coefficient investigation.<br></div>

Page generated in 0.0517 seconds