Spelling suggestions: "subject:"sheet metal deworming."" "subject:"sheet metal coforming.""
1 |
An investigation of the friction and lubrication effects in deep drawing process through simulative and empirical testingBoyd, Malcolm Russell January 1996 (has links)
No description available.
|
2 |
Integrated Blankholder Plate for Double Action Stamping DieTatipala, Sravan, Suddapalli, Nikshep Reddy January 2016 (has links)
A blankholder is used to hold the edges of metal sheet while it is being formed by a matrix and a punch. An efficient way to design a stamping die is to integrate the blankholder plate into the die structure. This would eliminate the time and cost to manufacture blankholder plates. The integrated structure is called integrated blankholder. The main focus of this thesis is structural analysis and optimization of the integrated blankholder. The structural analysis of the integrated blankholder model (used for the production of doors of Volvo car model V70) is performed using Hypermesh and Abaqus. The FE-results were compared with the analytical calculations of the fatigue limit. To increase the stiffness and reduce the stress levels in the integrated blankholder, topology and shape optimization is performed with Optistruct. Thereafter, a CAD model is set up in Catia based on the results of optimization. Finally, structural analysis of this CAD model is performed and the results are compared with the original results. The results show reduction in stress levels by 70% and a more homogeneous stress distribution is obtained. The mass of the die is increased by 17 % and in overall, a stiffer die is obtained. Based on the simulations and results, discussion and conclusions are formulated.
|
3 |
Sheet Metal Forming Simulations with FEMLindberg, Filip January 2011 (has links)
The design of new forming tools get more problemtic as the geometries get more complicated and the materials less formable. The idea with this project is to evaluate if an implementation of a simulation software in the designing process, to simulate the forming process before actually building the tools, could help Duroc Tooling avoid expensive mistakes. To evaluate this, the commercial FEM simulation software LS-DYNA was used in a complicated project, where the design of the forming tools for forming a girder was considered. The main objective was to avoid cracking and severe wrinkling which may result in the forming process. With help of simulations a stable forming process which did not yield cracks or severe wrinkling, was eventually found. The girder was almost impossible to form without cracking, but the breakthrough came when we tried to simulate a preforming step which solved the problem. Without a simulation software this would never have been tested since it would be to risky and expensive to try an idea which could turn out to be of no use. The simulations also showed that the springback - shape deformation occuring after pressing - was large and hard to predict without simulations. Therefore, the tools were also finally springback compensated. We concluded that simulations are very effective to quickly test new ideas which may be necessary when designing the tools for forming complicated parts. Simulation also provided detailed quantitative information about the expected cracks, wrinkles, and weaknesses of the resulting pieces. Even though there is cost associated with simulations, it is obvious from this project that a simulation software is a must if Duroc Tooling wants to be a leading company in sheet metal forming tools, and stand ready for the higher demands on the products in the future.
|
4 |
Warm Hydroforming Characteristics of Stainless Steel Sheet MetalsBillur, Eren 05 December 2008 (has links)
For numerical modeling and predictive analysis of warm hydroforming, better understanding of material properties (i.e. Flow curves) is required at elevated temperatures and high strains. Hydraulic bulge testing is a suitable method to obtain this information. However, analysis of the test data is not standardized as there are numerous approaches developed and adopted throughout the years. In this study, first, different approaches for hydraulic bulge analysis were compared with stepwise experiments to determine the best combination of approaches in obtaining accurate flow curves at different temperatures and strain rates. Then, three different grades of stainless steels (AISI 201, 301 and 304) were tested at various hydroforming conditions to determine the effect of pressure, temperature and strain rate on formability (i.e. cavity filling and thinning). These experimental findings were then used to be compared with predicted values from FEA. Results showed that material model works accurately in predicting the formability of materials in warm hydroforming.
|
5 |
Wear in sheet metal formingGåård, Anders January 2008 (has links)
<p>The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures.</p><p>Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.</p>
|
6 |
Gaussian Distribution Approximation for Localized Effects of Input ParametersRzepniewski, Adam K., Hardt, David E. 01 1900 (has links)
In the application of cycle-to-cycle control to manufacturing processes, the model of the process reduces to a gain matrix and a pure delay. For a general multiple input – multiple output process, this matrix shows the degree of influence each input has on each output. For a system of high order, determining this gain matrix requires excessive numbers of experiments to be performed, and thus a simplified, but non-ideal form for the gain matrix must be developed. In this paper, the model takes the form of a Gaussian distribution with experimentally determined standard deviation and scaling coefficients. Discrete die sheet metal forming, a multiple input-multiple output process with high dimensionality, is chosen as a test application. Results of the prediction capabilities of the Gaussian model, as well as those of two previously existing models, are presented. It is shown that the Gaussian distribution model does the best job of predicting the output for a given input. The model’s invariance over a set of different formed parts is also presented. However, as shown in the companion paper on cycle-to-cycle control, the errors inherent in this model will cause non-ideal performance of the resulting control system. However, this model appears to be the best form for this problem, given the limit of minimal experimentation. / Singapore-MIT Alliance (SMA)
|
7 |
Blank optimization in sheet metal forming using finite element simulationGoel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
|
8 |
Wear in sheet metal formingGåård, Anders January 2008 (has links)
The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures. Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.
|
9 |
Blank optimization in sheet metal forming using finite element simulationGoel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
|
10 |
Influence of primary precipitate shape, size volume fraction and distribution in PM tool steels on galling resistance / Påverkan av primära karbiders storlek, volymfraktion och distribution i PM verktygsståls motstånd mot gallingAndersson, Oscar January 2015 (has links)
In sheet metal forming (SMF), the major failure reason is galling. Galling is a process of different wear stages that leads to destruction of both the forming tool and the sheet metal working piece and is, because of that, of big economic importance for the SMF industries. Therefore, investigations and researches about how tool steels microstructure affect the tool steels galling resistance is of high priority. In the present work, different carbide properties were studied to find out how their properties affected the tool materials galling resistance. The investigated carbide properties were: Shape and size of the carbides Carbide volume fraction Carbide distribution in the microstructure The investigation included three tools, all made of the PM tool steel S390, that were heattreated differently in order to achieve different carbide properties but still maintain the same hardness. The tools were galling tested in a slider-on-flat-surface (SOFS) tribometer to determine their galling resistances. In a scanning surface electron microscope (SEM) the tools galling marks were analyzed to find explanations for the SOFS tribometer results and the connection to the tools different carbide properties. The investigations most galling resistant tool was the tool that had the microstructure with largest carbides which were distributed at grain boundaries and the second highest carbide volume fraction among the investigated tools.
|
Page generated in 0.0826 seconds