• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 38
  • 37
  • 9
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 245
  • 245
  • 133
  • 54
  • 40
  • 40
  • 39
  • 36
  • 33
  • 32
  • 28
  • 27
  • 27
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Blank optimization in sheet metal forming using finite element simulation

Goel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
52

Control and monitoring of sheet and film forming processes

Ramarathnam, Jaganath. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Dec. 30, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Process Control, Department of Chemical and Materials Engineering, University of Alberta." Includes bibliographical references.
53

Influence of primary precipitate shape, size volume fraction and distribution in PM tool steels on galling resistance / Påverkan av primära karbiders storlek, volymfraktion och distribution i PM verktygsståls motstånd mot galling

Andersson, Oscar January 2015 (has links)
In sheet metal forming (SMF), the major failure reason is galling. Galling is a process of different wear stages that leads to destruction of both the forming tool and the sheet metal working piece and is, because of that, of big economic importance for the SMF industries. Therefore, investigations and researches about how tool steels microstructure affect the tool steels galling resistance is of high priority. In the present work, different carbide properties were studied to find out how their properties affected the tool materials galling resistance. The investigated carbide properties were: Shape and size of the carbides   Carbide volume fraction Carbide distribution in the microstructure The investigation included three tools, all made of the PM tool steel S390, that were heattreated differently in order to achieve different carbide properties but still maintain the same hardness. The tools were galling tested in a slider-on-flat-surface (SOFS) tribometer to determine their galling resistances. In a scanning surface electron microscope (SEM) the tools galling marks were analyzed to find explanations for the SOFS tribometer results and the connection to the tools different carbide properties.  The investigations most galling resistant tool was the tool that had the microstructure with largest carbides which were distributed at grain boundaries and the second highest carbide volume fraction among the investigated tools.
54

Simulation of a sheet metal leading edge for a three piece vane using bending and deep-drawing

Zaikovska, Liene January 2013 (has links)
No description available.
55

Wear mechanisms in sheet metal forming : Effects of tool microstructure, adhesion and temperature

Gåård, Anders January 2008 (has links)
The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of lubricants, in combination with the introduction of high and ultrahigh-strength sheet materials, continuously increases the demands on the forming tools. The major cause for tool failure during the forming process is transfer and accumulation of sheet material on the tool surfaces, generally referred to as galling. The adhered material creates unstable frictional conditions and scratching of the tool/sheet interface. To provide the means of forming new generations of sheet materials, development of new tool materialswith improved galling resistance is required, which may include tailored microstructures introducing specific carbides and nitrides, coatings and improved surface finish. In the present work, the galling wear mechanisms in real forming operations have been studied and emulated at a laboratory scale by developing a test equipment. The wear mechanisms, identified in the real forming process, were distinguished into a sequence of events. At the initial stage, local adhesive wear of the sheets led to transfer of sheet material to the tool surfaces. Successive forming operations resulted in growth of the transfer layer with initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated withgross macroscopic damage. The wear process was successfully repeated in the laboratory test equipment in sliding between several tool materials, ranging from cast iron and conventional ingot cast tool steels, to advanced powder metallurgy tool steel, sliding against medium and high-strength steel sheets. By use of the test equipment, selected tool materials were ranked regarding galling resistance. The controlling mechanism for galling in sheet metal forming is adhesion. The initial sheet material transfer was found to occur, preferably, to the metallic matrix of the tool steels. Hence, the carbides in the particular steels appeared less prone to adhesion as compared to the metallic matrix. Therefore, an improved galling resistance was observed for a tool steel comprising a high amount of small homogeneously distributed carbides offering a low-strength interface to the transferred sheet material.Further, atomic force microscopy showed that nanoscale adhesion was influenced by temperature, with increasing adhesion as temperature increases. A similar dependence was observed at the macroscale where increasing surface temperature led to initiation of severe adhesive wear. The results were in good agreement to the nano scale observations and temperature-induced high adhesion was suggested as a possible mechanism.
56

Experimental and numerical investigation of a deeply buried corrugated steel multi plate pipe

Moreland, Andrew. January 2004 (has links)
Thesis (M.S.)--Ohio University, June, 2004. / Title from PDF t.p. Includes bibliographical references (leaves 78-80).
57

An approach to automate the synthesis of sheet metal parts

Patel, Jay K., January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
58

Advanced methods for finite element simulation for part and process design in tube hydroforming

Jirathearanat, Suwat, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xxv, 222 p.; also includes graphics (some color). Includes bibliographical references (p. 185-191).
59

Optimizing the automated plasma cutting process by design of experiment /

Vejandla, Durga Tejaswani, January 1900 (has links)
Thesis (M.S.)--Texas State University--San Marcos, 2009. / Vita. Appendix: leaves 73-133 . Includes bibliographical references (leaves 68-72 ). Also available on microfilm.
60

Effect of void damage and shear band development on the bendability of AA6111 automotive aluminum alloy sheet /

Lievers, W. Brent January 1900 (has links)
Thesis (M. Eng.)--Carleton University, 2001. / Includes bibliographical references (p. 100-119). Also available in electronic format on the Internet.

Page generated in 0.0279 seconds