• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 10
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 70
  • 70
  • 43
  • 28
  • 18
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Patogenetické mechanismy podmiňující vznik a rozvoj hemolyticko-uremického syndromu u dětí / Pathogenetic mechanisms determining the origin and development of a hemolytic-uremic syndrome in children

Karnišová, Lucia January 2021 (has links)
Hemolytic uremic syndrome (HUS) induced by Shiga toxin-producing E. coli (STEC) is the most common causes of acute kidney injury in children. The therapy of the disease is symptomatic and the main factors leading to the development of severe course of a STEC-HUS are still unknown. In our study, we dealt with factors leading to development of a severe course of STEC-HUS in pediatric patients on both the host and pathogen side. Using retrospective analysis of the courses in children in the Czech Republic, we found that the most common cause of STEC-HUS was serotype O26 and HUS most often affected children under 3 years of age. 63,8 % required dialysis and mortality was 8.62 %. On the host side we focused on the relationship between the activation of the alternative complement pathway and the severity of the course of HUS. We found a significant difference in the level of the C3 part of complement in patients who required dialysis and patients for whom dialysis was not necessary. We also a cut-off value for the C3 part of complement and its reduction below 0.825 g / l was associated with the need for dialysis treatment and a higher incidence of extrarenal complications. Based not only on our results, it can be assumed that the therapeutic effect of complement could affect the severity of the disease....
22

Molekularbiologische Charakterisierung Shiga Toxin 1-konvertierender Bakteriophagen und des phagenkodierten Typ III Effektorproteins NleA4795

Creuzburg, Kristina 08 June 2007 (has links) (PDF)
Shiga Toxin (Stx)-konvertierende Bakteriophagen besitzen eine konservierte lambdo-ide Genomstruktur, weisen aber ein hohes Maß an genetischer Diversität auf. Aus diesem Grund wurden die bereits vorhandenen Sequenzdaten der Stx1-Phagen CP-1639 des Escherichia coli O111:H- Stammes 1639/77 und BP-4795 des E. coli O84:H4 Stammes 4795/97 vervollständigt und analysiert. Im Gegensatz zu dem induzierbaren Bakteriophagen BP-4795 fehlen CP-1639 einige Gene, die für den lytischen Lebenszyklus eines Bakteriophagen notwendig sind. Daher handelt es sich bei CP-1639 um einen kryptischen Prophagen, der nicht mehr in der Lage ist das Wirtschromosom zu verlassen und intakte Phagenpartikel zu bilden. Die Integra-tionsstellen wurden innerhalb des Gens yehV für BP-4795 und ssrA für CP-1639 bestimmt. In unmittelbarer Umgebung des Integrationsortes von CP-1639 befindet sich ein eigenständiges integratives Element. Dieses besteht aus drei offenen Lese-rahmen unbekannter Herkunft, sowie einem Integrasegen und kann auch ohne Assoziation mit Phagen-DNA auftreten. Phagen können zusätzlich zu ihrem Genom Gene bakteriellen Ursprungs tragen. Diese können unter anderem infolge von Transpositionen oder einer unkorrekten Exzision der Phagen-DNA aus dem Wirtschromosom während des lytischen Lebenszyklus in das betreffende Phagengenom eingebaut werden. Eines solches Gen des Bakteriophagen BP-4795 kodiert das Typ III Effektorprotein NleA4795, dessen Funktionalität nach dem C-terminalen Einbau von neun Codons des Hämagglutinin (HA)-Epitopes des humanen Influenzavirus in die Sequenz des Gens nleA4795 überprüft wurde. Dies erfolgte unter Verwendung der Western Blot Analyse durch die Expression dieses Fusionsproteins in dem Wildtyp-Stamm 4795/97 und in der Deletionsmutante 4795escN des Stammes 4795/97. Die Typ III Sekretionssys-tem (T3SS)-inaktive Mutante 4795escN wurde im Verlauf dieser Arbeit hergestellt. Diese Untersuchungen zeigten ebenfalls, dass zur Sekretion von NleA4795 ein in-taktes T3SS notwendig ist. Weiterhin zeigte die Infektion einer HeLa-Zelllinie mit NleA4795-HA exprimierenden Bakterienstämmen und die anschließende Analyse mit Hilfe der Immunfluoreszenz, die Translokation des Proteins in eukaryotische Wirts-zellen. Darüber hinaus deuten die Ergebnisse dieser Untersuchung auf eine Lokali-sation von NleA4795-HA innerhalb des Trans-Golgi Netzwerkes hin. Die Verbreitung des Gens nleA wurde in insgesamt 170 Shiga Toxin-produzierenden E. coli und enteropathogenen E. coli Stämmen untersucht. Dies führte zur Identifika-tion von 14 verschiedenen Varianten des Gens nleA in 149 der überprüften Stämme, wobei mit Ausnahme von zwei Isolaten ebenfalls ein Markergen des T3SS nachge-wiesen werden konnte. Neben drei bereits bekannten Varianten konnten elf neue Varianten identifiziert werden, deren abgeleitete Aminosäuresequenzen sich zu 71% bis 96% glichen. Sequenzunterschiede traten insbesondere aufgrund der Deletion oder Insertion von vier bis 51 Aminosäuren im Mittelteil der potentiellen Proteine auf. Weiterhin deuten die Ergebnisse dieser Untersuchungen eine Assoziation bestimm-ter Varianten des Gens nleA mit spezifischen E. coli Serogruppen an. Southern-Blot Hybridisierungen zeigten, dass etwa ein Viertel der nleA-positiven Stämme zwei Ko-pien dieses Gens in ihrem Genom tragen. Hierbei handelt es sich meist um zwei verschiedene Varianten. In fast allen Fällen kodiert eine dieser Varianten, aufgrund einer Punktmutation oder Insertion eines IS-Elementes, ein verkürztes und vermut-lich nicht funktionelles Protein. Mit Hilfe von Transduktionsexperimenten konnten verschiedene Varianten des Gens nleA im Genom induzierbarer Phagen nachge-wiesen werden, was auf eine Verbreitung des Gens nleA durch den horizontalen Gentransfer hinweist.
23

Molekularbiologische Charakterisierung Shiga Toxin 1-konvertierender Bakteriophagen und des phagenkodierten Typ III Effektorproteins NleA4795

Creuzburg, Kristina 24 May 2007 (has links)
Shiga Toxin (Stx)-konvertierende Bakteriophagen besitzen eine konservierte lambdo-ide Genomstruktur, weisen aber ein hohes Maß an genetischer Diversität auf. Aus diesem Grund wurden die bereits vorhandenen Sequenzdaten der Stx1-Phagen CP-1639 des Escherichia coli O111:H- Stammes 1639/77 und BP-4795 des E. coli O84:H4 Stammes 4795/97 vervollständigt und analysiert. Im Gegensatz zu dem induzierbaren Bakteriophagen BP-4795 fehlen CP-1639 einige Gene, die für den lytischen Lebenszyklus eines Bakteriophagen notwendig sind. Daher handelt es sich bei CP-1639 um einen kryptischen Prophagen, der nicht mehr in der Lage ist das Wirtschromosom zu verlassen und intakte Phagenpartikel zu bilden. Die Integra-tionsstellen wurden innerhalb des Gens yehV für BP-4795 und ssrA für CP-1639 bestimmt. In unmittelbarer Umgebung des Integrationsortes von CP-1639 befindet sich ein eigenständiges integratives Element. Dieses besteht aus drei offenen Lese-rahmen unbekannter Herkunft, sowie einem Integrasegen und kann auch ohne Assoziation mit Phagen-DNA auftreten. Phagen können zusätzlich zu ihrem Genom Gene bakteriellen Ursprungs tragen. Diese können unter anderem infolge von Transpositionen oder einer unkorrekten Exzision der Phagen-DNA aus dem Wirtschromosom während des lytischen Lebenszyklus in das betreffende Phagengenom eingebaut werden. Eines solches Gen des Bakteriophagen BP-4795 kodiert das Typ III Effektorprotein NleA4795, dessen Funktionalität nach dem C-terminalen Einbau von neun Codons des Hämagglutinin (HA)-Epitopes des humanen Influenzavirus in die Sequenz des Gens nleA4795 überprüft wurde. Dies erfolgte unter Verwendung der Western Blot Analyse durch die Expression dieses Fusionsproteins in dem Wildtyp-Stamm 4795/97 und in der Deletionsmutante 4795escN des Stammes 4795/97. Die Typ III Sekretionssys-tem (T3SS)-inaktive Mutante 4795escN wurde im Verlauf dieser Arbeit hergestellt. Diese Untersuchungen zeigten ebenfalls, dass zur Sekretion von NleA4795 ein in-taktes T3SS notwendig ist. Weiterhin zeigte die Infektion einer HeLa-Zelllinie mit NleA4795-HA exprimierenden Bakterienstämmen und die anschließende Analyse mit Hilfe der Immunfluoreszenz, die Translokation des Proteins in eukaryotische Wirts-zellen. Darüber hinaus deuten die Ergebnisse dieser Untersuchung auf eine Lokali-sation von NleA4795-HA innerhalb des Trans-Golgi Netzwerkes hin. Die Verbreitung des Gens nleA wurde in insgesamt 170 Shiga Toxin-produzierenden E. coli und enteropathogenen E. coli Stämmen untersucht. Dies führte zur Identifika-tion von 14 verschiedenen Varianten des Gens nleA in 149 der überprüften Stämme, wobei mit Ausnahme von zwei Isolaten ebenfalls ein Markergen des T3SS nachge-wiesen werden konnte. Neben drei bereits bekannten Varianten konnten elf neue Varianten identifiziert werden, deren abgeleitete Aminosäuresequenzen sich zu 71% bis 96% glichen. Sequenzunterschiede traten insbesondere aufgrund der Deletion oder Insertion von vier bis 51 Aminosäuren im Mittelteil der potentiellen Proteine auf. Weiterhin deuten die Ergebnisse dieser Untersuchungen eine Assoziation bestimm-ter Varianten des Gens nleA mit spezifischen E. coli Serogruppen an. Southern-Blot Hybridisierungen zeigten, dass etwa ein Viertel der nleA-positiven Stämme zwei Ko-pien dieses Gens in ihrem Genom tragen. Hierbei handelt es sich meist um zwei verschiedene Varianten. In fast allen Fällen kodiert eine dieser Varianten, aufgrund einer Punktmutation oder Insertion eines IS-Elementes, ein verkürztes und vermut-lich nicht funktionelles Protein. Mit Hilfe von Transduktionsexperimenten konnten verschiedene Varianten des Gens nleA im Genom induzierbarer Phagen nachge-wiesen werden, was auf eine Verbreitung des Gens nleA durch den horizontalen Gentransfer hinweist.
24

Escherichia coli O157: detection and quantification in cattle feces by quantitative PCR, conventional PCR, and culture methods

Noll, Lance January 1900 (has links)
Master of Science / Department of Diagnostic Medicine/Pathobiology / T. G. Nagaraja / Shiga toxin-producing E. coli O157 is a major foodborne pathogen. The organism colonizes the hindgut of cattle and is shed in the feces, which serves as a source of contamination of food. Generally, cattle shed E. coli O157 at low concentrations (≤ 10[superscript]2 CFU/g), but a subset of cattle, known as “super-shedders”, shed high concentrations (>10[superscript]3 CFU/g) and are responsible for increased transmission between animals and subsequent hide and carcass contamination. Therefore, concentration data are an important component of quantitative microbial risk assessment. A four-plex quantitative PCR (mqPCR) targeting rfbE[subscript]O157, stx1, stx2 and eae was developed and validated to detect and quantify E. coli O157 in cattle feces. Additionally, the applicability of the assay to detect E. coli O157 was compared to conventional PCR (cPCR) targeting the same four genes, and a culture method. Specificity of the assay to differentially detect the four genes was confirmed. In cattle feces spiked with pure cultures, detection limits were 2.8 x 10[superscript]4 and 2.8 x 10[superscript]0 CFU/g before and after enrichment, respectively. Detection of E. coli O157 in feedlot cattle fecal samples (n=278) was compared between mqPCR, cPCR, and a culture method. Of the 100 samples that were randomly picked from the 136 mqPCR-positive samples, 35 and 48 tested positive by cPCR and culture method, respectively. Of the 100 samples randomly chosen from the 142 mqPCR-negative samples, all were negative by cPCR, but 21 samples tested positive by the culture method. McNemar’s chi-square tests indicated significant disagreement between the proportions of positive samples detected by the three methods. Applicability of the assay to quantify E. coli O157 was determined with feedlot cattle fecal samples (n=576) and compared to spiral plate method. Fecal samples that were quantifiable for O157 by mqPCR (62/576; 10.8%) were at concentrations of ≥ 10[superscript]4 CFU/g of feces. Only 4.5% (26/576) of samples were positive by spiral plate method, with the majority (17/26; 65.4%) at below 10[superscript]3 CFU/g. In conclusion, the mqPCR assay that targets four genes is a novel and more sensitive method than the cPCR or culture method to detect and quantify E. coli O157 in cattle feces.
25

Dextran sulfate sodium colitis facilitates murine colonization by Shiga toxin-producing E. coli: a novel model for the study of Shiga toxicosis

Hall, Gregory 24 October 2018 (has links)
Shiga toxin-producing E. coli (STEC) are globally relevant bacterial pathogens responsible for epidemic outbreaks of hemorrhagic diarrhea with variable progression to potentially fatal systemic Shiga toxicosis. Predictive clinical biomarkers and targeted therapeutic interventions for systemic Shiga toxicosis in diagnosed STEC patients are not available, and the impact of Shiga toxin production on STEC colonization and survival remain unclear. Improved murine models of STEC infection are needed to address knowledge gaps surrounding the gastrointestinal effects of Shiga toxins, as previously published models utilize ablation of host defense responses or microbiota depletion to facilitate colonization and are poorly suited for study of the effects of Shiga toxins on host responses. Dextran sulfate sodium (DSS) colitis in rodents has been associated with outgrowths of commensal E. coli in the literature, suggesting that DSS colitis could open a gastrointestinal niche usable by pathogenic STEC. This DSS colitis-based approach successfully induced susceptibility to robust colonization by two clinical isolate STEC strains in standard C57BL/6 mice. Studies using a Shiga-like toxin 2 (STX2)-producing clinical isolate STEC strain and its paired isogenic STX2 deletion strain (STEC(ΔSTX2)) revealed that STX2 was associated with delayed gastrointestinal clearance of STEC and concurrent reduction in colonic interleukin 23 (IL-23) axis transcripts known to be critical for pathogen clearance in other gastrointestinal pathogen models. In vivo reductions in IL-23 axis transcripts in the DSS+STEC model were supported by decreased IL-23 protein secretion by human macrophage-like cells during Shiga intoxication in vitro. Increased morbidity during STX2-producing STEC infection was associated with renal injury consistent with murine systemic Shiga toxicosis characterized by elevations in renal transcripts of molecular injury markers and histologically apparent renal tubular injury in a subset of mice. The dissertation research establishes a novel model of DSS colitis-facilitated murine STEC infection that recapitulates progression to systemic Shiga toxicosis in a subset of infected mice and demonstrates a clear STEC survival benefit associated with STX2 production. Shiga toxin-induced suppression of IL-23 axis signaling is a novel finding facilitated by the DSS+STEC model, demonstrating its utility for future delineation of the impacts of Shiga toxins on gastrointestinal host responses to STEC.
26

Rôle des phages Stx dans la diversité des souches d’Escherichia coli producteurs de Shiga-toxine (STEC) O26 : H11 isolées de produits alimentaires : étude du polymorphisme et de la mobilité des gènes stx / Role of Stx phage in the diversity of Shiga toxin producing Escherichia coli (STEC) O26 : H11 strains isolated from food products : study of polymorphism and genetic mobility of stx genes

Bonanno, Ludivine 03 November 2015 (has links)
Les Escherichia coli producteurs de Shiga-toxines (STEC) sont responsables d'infections humaines, allant d'une diarrhée aqueuse bénigne pouvant se compliquer en syndrome hémolytique et urémique (SHU), parfois mortel. La transmission de STEC à l'Homme s'effectue principalement par l'ingestion d'aliments contaminés. Le principal facteur de virulence des STEC est le gène stx (codant la Shiga-toxine), localisé dans le génome d'un prophage. La thèse a été centrée sur les STEC O26:H11, deuxième sérotype à l'origine de SHU dans le monde, et premier retrouvé dans les fromages au lait cru.Le premier objectif était de caractériser génétiquement les STEC O26:H11 et leurs phages Stx (variants du gène stx et sites d'insertion des phages Stx) afin d'identifier d'éventuelles différences entre ces souches selon leur origine. La majorité des souches alimentaires et bovines étudiées possèdent le variant stx1a et leurs phages Stx sont intégrés dans wrbA et yehV. Les souches humaines possèdent les variants stx1a et stx2a en proportions équivalentes. Leurs phages Stx sont aussi intégrés dans wrbA et yehV mais à la différence des souches alimentaires et bovines, le site yecE a été identifié comme site d'insertion. Toutes les souches humaines qui possédaient un phage Stx2a intégré dans wrbA et yecE ont causé des SHU ; ce qui pourrait être un indicateur de haute virulence. Des études ont montré que des souches E. coli Attachant/Effaçant (AEEC) O26:H11 sont isolées à partir d'aliments identifiés comme « stx+ » par PCR. En dehors de l'absence du gène stx, ces souches AEEC sont similaires aux STEC. Leur caractérisation a montré ici que la majorité d'entre elles ont leurs sites d'insertion intacts, caractéristique compatible avec une perte de phage Stx par excision spontanée. La stabilité des phages Stx a donc été évaluée chez les STEC O26:H11. La présence/absence de phages Stx a été quantifiée par PCRq pour chaque souche au niveau de la population bactérienne entière montrant que les STEC ont la capacité de perdre leurs phages Stx. En revanche, cette instabilité n'est pas liée aux sites d'insertion. Plusieurs essais visant à introduire des phages Stx dans les souches AEEC pour les convertir en STEC ont été réalisés mais les résultats ont montré qu'il était difficile d'infecter ces souches. L'étude du taux d'induction des phages Stx in vitro chez les STEC O26:H11 a montré, qu'en présence de mitomycine C, les phages Stx2 étaient plus inductibles que les phages Stx1. En revanche, il n'a pas été mis en évidence de différences en fonction de l'origine des souches testées et du site d'intégration des phages Stx. L'analyse morphologique de quelques phages Stx a montré que le type Stx1 ou Stx2 n'était pas lié à une forme spécifique de phage. L'étude des stress relatifs à la technologie fromagère a montré que le stress salin et le stress oxydatif, lié à la libération potentielle d'H2O2 par d'autres bactéries, entrainaient l'induction des phages Stx. Comme des souches AEEC sont fréquemment isolées à partir d'aliments qualifiés de « stx+» par PCR, le processus analytique d'isolement des STEC a aussi été étudié. La production de phages Stx lors de la phase d'enrichissement semble possible à partir d'un aliment contaminé. En revanche, aucun composant de cette méthode, testé individuellement, n'a pu être identifié comme inducteur des phages Stx. Ces travaux ont permis d'acquérir des connaissances sur la diversité des phages Stx issus de STEC O26:H11 isolées chez l'Homme et dans la filière laitière. Des différences au niveau des variants du gène stx mais aussi des sites d'insertion des phages Stx ont pu être observées en fonction de l'origine des souches. De plus les niveaux d'induction des phages Stx diffèrent selon le variant du gène stx. Ces différences pourraient refléter l'existence de clones distincts, aux potentiels de virulence différents, circulant dans les aliments, chez les bovins et les patients / Shiga toxin-producing Escherichia coli (STEC) are responsible for human infections, ranging from mild diarrhea to hemolytic-uremic syndrome (HUS), sometimes with fatal outcome. Transmission of STEC to humans occurs mainly through the ingestion of contaminated food. The main virulence factor of STEC is the stx gene (encodes Shiga-toxin) located in the genome of a prophage. The PhD thesis was focused on STEC O26:H11, which is the second serotype causing HUS in the world, and the first one found in raw milk cheeses. The first objective was to characterize genetically STEC O26:H11 strains and their Stx phages (stx gene subtypes and insertion sites of Stx phages) in order to identify any differences between these strains according to their origin. The majority of the investigated food and bovine strains possessed stx1a subtype and their Stx phages were integrated into wrbA and yehV. Human strains possessed the stx1a and stx2a subtypes in equivalent proportions. Their Stx phages were also integrated into wrbA and yehV but unlike food and bovine strains, yecE site were identified as insertion site. All the human strains carrying an Stx2a phage integrated into wrbA and yecE caused HUS, which could indicate a high virulence. Studies showed that Attaching/Effacing E. coli (AEEC) O26:H11 strains were isolated from foods identified as "stx +" by PCR. Except for the absence of stx gene, these AEEC strains are similar to STEC. Their characterization showed, in this study, that the majority of them had intact insertion sites, in agreement with a possible loss of Stx phage by spontaneous excision. The stability of Stx phages was evaluated in STEC O26:H11. Presence/absence of Stx phages was quantified for each strain in the total bacterial population, showing that STEC were capable of losing their Stx phages. However, this instability was not related to the insertion sites. Several attempts to introduce Stx phages in AEEC strains in order to convert them into STEC were conducted but the results showed that it was difficult to infect these strains. The induction rate of Stx phages in vitro in STEC O26:H11 showed that, with mitomycin C, the Stx2 phages were more inducible than Stx1 phages. However no difference was found with the origin of the strains tested and the Stx phage integration site used. The morphological analysis of some Stx phages showed that Stx1 or Stx2 type was not related to a specific phage shape. Study of various stress related to the cheese-making process showed that the osmotic and oxidative stress related to the potential release of H2O2 by other bacteria, led to the induction of Stx phages. Because AEEC strains are frequently isolated from food qualified as "stx+" by PCR, the analytical STEC isolation procedure was studied for its ability to induce Stx phages. Production of Stx phages during the enrichment phase seemed possible from contaminated food. However, none of the components of this method, tested individually, could be identified as an inducer of Stx phages. This work highlighted the diversity of Stx phages from STEC O26:H11 isolated from humans and dairy sector. Differences in stx subtypes and Stx phages insertion sites present among the STEC O26:H11 strains were observed depending on the origin of the strains. Moreover the induction levels of Stx phages differed according to the stx subtypes. These differences might reflect the existence of distinct clones, with varying virulence potential, circulating in foods, cattle and patients
27

Desenvolvimento de uma nova estratégia vacinal contra síndrome hemolítica urêmica utilizando linhagens geneticamente modificadas de Bacillus subtilis capazes de expressar a toxina Stx2 de EHEC. / Development of a new vaccine approach against hemolytic uremic syndrome using genetically modified Bacillus subtilis strain expressing Stx2 EHEC toxin.

Gomes, Priscila Aparecida Dal Pozo 25 February 2008 (has links)
A Síndrome Hemolítica Urêmica (SHU) é a principal doença associada à infecção com linhagens de Escherichia coli produtoras de toxina de Shiga (Stx), doença para qual não há uma vacina ou tratamento específico. A toxina Stx é formada por uma subunidade A enzimaticamente ativa e uma B pentamérica responsável pela ligação da toxina na célula hospedeira. Neste trabalho propomos o uso de Bacillus subtilis, uma bactéria não patogênica e formadora de esporos, como veículo vacinal para a expressão de formas atóxicas da Stx2, sob o controle de um promotor induzível por estresse (PgsiB). Camundongos BALB/c imunizados com células vegetativas ou esporos das linhagens vacinais de B. subtilis, por diferentes vias, induziram baixos níveis de anticorpos anti-Stx em soro (IgG) e fezes (IgA). Avaliamos também o potencial imunogênico da Stx gerada em linhagens recombinates de E. coli, mas os anticorpos gerados não foram capazes de neutralizar a toxina nativa. Os resultados indicam que formas alternativas de expressão e/ou o uso de adjuvantes são necessárias para gerar formulações vacinais eficazes contra a SHU. / The Hemolytic Uremic Syndrome (HUS) is the main disease associated with infections with Shiga toxin (Stx) - producing Escherichia coli strain and no effective vaccine or treatment exist. The Stx toxin consist of an enzymatically active A subunit and a pentameric B subunit responsible toxin binding to host cells. In this work we propose the use of Bacillus subtilis, a harmless spore form bacteria as a vaccine vehicle for the expression atoxic forms of Stx2, under the control of stress inducible (PgsiB) promoter. BALB/c mice immunized with vegetative cells and spores of the B. subtilis vaccine strain using different immunization routes elicited low specific antibody levels at serum (IgG) or fecal extracts (IgA). We also investigated the immunogenic potencial of StxB purified from recombinant E. coli strain, but the induced anti-StxB antibodies did not neutralize the native toxin. The results indicate that alternative expression system or the incorporation of the adjuvants are required for the generation of vaccine formulation active against HUS.
28

The recycling endosome is required for transport of retrograde toxins

McKenzie, Jenna Elyse 01 December 2009 (has links)
Shiga toxin and cholera toxin are members of the AB5 family of protein exotoxins. The A subunit is the enzymatic subunit, whereas the pentameric B subunit binds cell surface receptors and carries the A subunit to the endoplasmic reticulum (ER) where it can be released into the cytosol. The B-subunits (STxB or CTxB) mediate toxin traffic along the retrograde pathway from the plasma membrane to the ER via early/recycling endosomes and the Golgi apparatus. It is unknown if STxB requires transport through the Golgi, or if it is just kinetically favorable. It is also unknown if the recycling endosome (RE) plays a role in the retrograde transport of STxB and CTxB. The first goal of this dissertation research was to demonstrate that transport through the Golgi is required for STxB to reach the ER. Using aluminum fluoride treatment, a simple temperature block, and cytoplast studies, I show that Golgi transport is necessary for STxB to reach the ER. The second goal of this dissertation research was to tease apart how STxB and CTxB move through early and recycling endosomes as well as elucidate a mechanism of how STxB exits endosomes en route to the Golgi. The role of the RE in STxB and CTxB transport is unclear. I used transferrin colocalization and temperature block studies to show that STxB and CTxB traffic through the RE. I then used HRP ablation of the RE to show that STxB requires the RE to reach the Golgi. I also examined the role of an RE-specific protein, EHD1, in exit of STxB from the RE. EHD1 has been previously shown to regulate recycling Tfn exit from the RE but its role in STxB transport is unknown. Expression of a dominant negative form of EHD1 arrested STxB at the RE and prevented it from reaching the Golgi. Together, these results suggest that STxB and CTxB transit the RE, STxB requires a functional RE for normal retrograde trafficking, and that STxB exit from the RE is regulated by EHD1.
29

Evaluation of chromosomally-integrated luxCDABE and plasmid-borne GFP markers for the study of localization and shedding of STEC O91:H21 in calves

Hong, Yingying 01 May 2011 (has links)
Shiga toxin-producing Escherichia coli (STEC) has been recognized as an important foodborne pathogen. Of this group, O91 is one of the common serogroups frequently isolated from patients and food in some countries, with O91:H21 being previously implicated in hemolytic uremic syndrome (HUS). Cattle are principle reservoirs for STEC, and studies examining STEC shedding in cattle often include experimental inoculation of strains of interest using antibiotic resistance markers for identifiable recovery. However, indigenous fecal microbes exhibiting similar resistance patterns can confound such studies. Such was the case in a study by our group when attempting to characterize shedding patterns of O91:H21 in calves, leading us to seek other, more effective, markers. Among our strategies was the development of a chromosomally integrated bioluminescence marker via transposon mutagenesis using a luxCDABE cassette from Photorhabdus luminescens and a plasmid borne GFP marker via transformation of the pGFP vector. The luxCDABE marker was inserted on host chromosome at a site that was 27 nucleotides before the stop codon of gene yihL and confirmed to have little impact on important virulence genes and growth rate with a very high stability. In contrast, plasmid borne GFP marker showed poor stability without the application of appropriate antibiotic selection pressure. For calves receiving luxCDABE-marked O91:H21, the fecal counts of the organismranged from 1.2 x 10 3 to 1.3 x 10 4CFU/g at two days post inoculation and decreased to 5.8 to 8.7 x 10 2 CFU/g or undetectable level after two weeks.Intestinal contents sampled from various positions at day 14 post inoculation indicated that cecum and descending colon may be the primary localization sites of this O91:H21 strain. Compared to antibiotic resistance markers, the use of bioluminescence markers does not require the restricted pre-inoculation screening of animals. The enumeration of luxCDABE-marked O91:H21 from feces and intestinal contents was easily accomplished and confirmed reliable by M-PCR analysis under the presence of indigenous bacteria which cannot be eliminated by antibiotic-supplemented selective plates. Therefore, the chromosomal integrated luxCDABE marker may be a better model for the study of STEC colonization and shedding in cattle.
30

Colonization of cattle by non-O157 Shiga Toxin-producing <i>Escherichia coli</i> serotypes

Asper, David Jose 29 September 2009
Shiga toxin-producing <i>E. coli</i> (STEC) is an important food- and water-borne pathogen of humans, causing Hemorrhagic Colitis and Haemolytic Uremic Syndrome. Colonization of both cattle and human hosts is mediated through the action of effector molecules secreted via a type III secretion system (T3SS), which forms attaching and effacing lesions (A/E). The necessary effectors which form A/E by manipulation of host signalling and actin nucleation are present on a pathogenicity island called the Locus of Enterocyte Effacement (LEE).<p> It has been reported that vaccination of cattle with Type III-secreted proteins (T3SPs) from STEC O157 resulted in decreased shedding. In order to extend this to non-O157 STEC serotypes, we examined the serological cross-reactivity of T3SPs of serotypes O26:H11, O103:H2, O111:NM and O157:H7. Groups of cattle were vaccinated with T3SPs produced from each of the serotypes and the magnitude and specificity of the responses were measured resulting in limited cross reactivity. Overall, results suggest that vaccination of cattle with T3SPs as a means of reducing the risk of STEC transmission to humans will induce protection that is serotype specific.<p> To pursue the possibility of a cross-protective vaccine, we investigated the protective properties of a chimeric Tir protein against STEC serotypes. Several studies have reported that Tir is highly immunogenic and capable of producing high antibody titers. Potter and colleagues also demonstrated that the vaccination of cattle with ∆tir STEC O157 strain did not protect as well as the wildtype strain. We constructed thirty-mer peptides to the entire STEC O157 Tir protein, as well as to the intimin binding domain of the Tir protein from STEC serotype O26, O103 and O111. Using sera raised against STEC O157 and non-O157 T3SPs, we identified a number of immunogenic peptides containing epitopes unique to a particular serotype. Two different chimeric Tir proteins were constructed containing the STEC O157 Tir protein fused with six STEC non-O157 peptides with or without the Leukotoxin produced by <i>Mannheimia haemolytica</i>. However, the vaccination of mice with the chimeric protein did not protect against challenge with STEC O157 or STEC O111. These results suggest that to achieve cross protection against STEC serotypes using a recombinant protein vaccine, other immunogenic and protective antigens must also be included.<p> In order to identify other immunogenic and cross-protective antigens we cloned and expressed the genes coding for 66 effectors and purified each as histidine-tagged proteins. These included 37 LEE-encoded proteins and 29 non-LEE effectors. The serological response against each protein was measured by Western blot analysis and an enzyme-linked immunosorbent assay (ELISA) using sera from rabbits immunized with T3SPs from four STEC serotypes, experimentally infected cattle and human sera from 6 HUS patients. A total of 20 proteins were recognized by at least one of the STEC T3SP- vaccinated rabbits using Western blots. Sera from experimentally infected cattle and HUS patients were tested using an ELISA against each of the proteins. Tir, EspB, EspD, EspA and NleA were recognized by the majority of the samples tested. Overall, proteins such as Tir, EspB, EspD, NleA and EspA were highly immunogenic for both vaccinated and naturally infected subjects.<p> Based on the above results, two different mixtures of secreted proteins (5 proteins and 9 proteins) were used to vaccinate mice and test the level of shedding following challenge with STEC O157. Overall, the cocktail vaccine containing 9 immunogenic effectors including Tir, EspB, EspD, NleA and EspA was capable of reducing shedding as effectively as the current STEC T3SPs vaccine, Econiche®.

Page generated in 0.0398 seconds