Spelling suggestions: "subject:"shock clynamics"" "subject:"shock ctynamics""
1 |
Contribution au développement d'une méthode de calcul rapide de propagation des ondes de souffle en présence d'obstacles / Contribution to the development of a fast running method for blast waves propagation in presence of obstaclesRidoux, Julien 04 October 2017 (has links)
La simulation directe des ondes de souffle générées par une explosion maîtrisée, ou accidentelle, est un problème délicat du fait des différentes échelles spatiales en jeu. De plus, en environnement réel (topographie, zone urbaine, …), l’onde de souffle interagit avec les obstacles géométriques en se réfléchissant, se diffractant et se recombinant. La forme du front devient complexe, rendant difficile voire impossible une estimation a priori des effets des explosions.Ce travail de thèse contribue à la mise au point d’une méthode de calcul rapide des ondes de souffle en présence d’obstacles. Il repose sur des modèles hyperboliques simplifiés de propagation d'ondes de choc extraits de la littérature, où seul le front incident est modélisé. Ceci permet une réduction significative du coût des simulations : les 5 équations d'Euler 3D sont réduites à un problème 2D à 2 équations. L’analyse du problème de Riemann met en évidence l’absence de solution de ces modèles lors de la diffraction sur un coin convexe dans certaines configurations fréquemment rencontrées en pratique. L’extension des modèles aux ordres supérieurs ne permet pas de corriger ce défaut. Nous levons cette limitation au travers d'une modification ad hoc. L’effet de souffle consécutif à une explosion est ensuite introduit à partir d’une loi expérimentale pression/distance. Du point de vue numérique, un algorithme Lagrangien conservatif de suivi de front est développé en 2D. Les tests montrent que ce nouveau modèle se compare favorablement à l’expérience, avec une réduction de plusieurs ordres de grandeur du temps de calcul en comparaison des méthodes de résolution directe des équations d’Euler. / The direct numerical simulation of blast waves (accidental or industrial explosions) is a challenging task due to the wide range of spatial and temporal scales involved. Moreover, in a real environment (topography, urban area …), the blast wave interacts with the geometrical obstacles resulting in reflection, diffraction and waves recombination phenomena. The shape of the front becomes complex, which limits the efficiency of simple empirical methods.This thesis aims at contributing to the development of a fast running method for blast waves propagation in presence of obstacles. This is achieved through the use of simplified hyperbolic models for shock waves propagation such as Geometrical Shock Dynamics (GSD) or Kinematic models. These models describe only the leading shock front. This leads to a drastic reduction of the computational cost, from 5 Euler equations at 3D to a 2D problem with 2 equations. However, the study of the Riemann problem shows that the solution of these models does not always exist in the case of the diffraction over a convex corner. We propose an ad-hoc extension of GSD in order to remove this limitation. The blast effects are also recovered through an empirical law available in free field. From a numerical point of view, a 2D conservative Lagrangian algorithm has been implemented and validated. First comparisons with experimental data show the good behaviour of this new model at nearly free computational cost compared to direct Euler methods.
|
2 |
Shocks, Shock-Boundary Layer Interaction, And Transonic FlutterKarnick, Pradeepa Tumkur January 2014 (has links) (PDF)
Transonic utter is an aeroelastic instability characterized by part-chord shocks over an airfoil and single mode oscillations leading to a drop in the utter boundary. We present a numerical study that examines the influence of shocks, shock-boundary layer interactions, and three-dimensional flow features on the transonic utter boundary. Using energy concepts we show that shocks and shock-boundary layer interactions have a profound influence on the stability of an aeroelastic system. Viscosity stabilizes the aeroelastic system through thickness effects up-to the bottom of the transonic dip. Beyond, shock induced separation not only stalls the aeroelastic system, but also makes it oscillate about a new equilibrium position. In this region, where viscous effects are dominant, the inviscid utter boundary shows multiple utter points. Modal contributions to the response of the aeroelastic systems |viscous and inviscid | indicate that viscosity restricts higher mode participation. Restriction of higher modes by viscosity is responsible for the elimination of multiple utter points that are present in the inviscid case. Multiple forcing frequencies are observed in those regions of the utter boundary where viscous effects are dominant. Further, the shock dynamics exhibit shock-reversal where-in the shock motion predicted by the viscous simulation is 180_ out of phase relative to that of the inviscid case. At Mach numbers beyond the shock-stall region the shock moves close to the trailing edge of the airfoil, and inviscid and viscous simulations predict almost a similar utter boundary. Three-dimensional transonic flow structures on a finite-span wing aeroelastic model de-stabilizes it relative to an equivalent two-dimensional model.
|
3 |
Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion / Modélisation hydrodynamique du schéma d'allumage par choc pour la fusion par confinement inertielVallet, Alexandra 20 November 2014 (has links)
Le schéma d'allumage par choc pour la fusion par confinement inertiel utilise une impulsion laser intense à la fin d'une phase d'assemblage de combustible. Les paramètres clefs de ce schéma sont la génération d'une haute pression d'ablation, l'amplification de la pression du choc généré par un facteur supérieur à cent et le couplage du choc avec le point chaud de la cible. Dans cette thèse, de nouveaux modèles semi-analytiques sont développés afin de décrire le choc d'allumage depuis sa génération jusqu'à l'allumage du combustible. Tout d'abord, un choc sphérique convergent dans le coeur pré-chauffé de la cible est décrit. Le modèle est obtenu par perturbation de la solution auto-semblable de Guderley en tenant compte du nombre de Mach du choc élevé mais fini. La correction d'ordre un tient compte de l'effet de la force du choc. Un critère d'allumage analytique est exprimé en fonction de la densité surfacique du point chaud et de la pression du choc d'allumage. Le seuil d'allumage est plus élevé pour un nombre de Mach faible. Il est montré que la pression minimale du choc, lorsqu'il entre dans le coeur de la cible, est de 20Gbar. La dynamique du choc dans la coquille en implosion est ensuite analysée. Le choc se propage dans un milieu non inertiel avec un fort gradient de pression et une augmentation temporelle générale de la pression. La pression du choc est amplifiée plus encore durant la collision avec une onde de choc divergente provenant de la phase d'assemblage. Les modèles analytiques développés permettent une description de la pression et de la force du choc dans une simulation typique de l'allumage par choc. Il est démontré que, dans le cas d'une cible HiPER, une pression initiale du choc de l'ordre de 300 Mbar dans la zone d'ablation est nécessaire. Il est proposé une analyse des expériences sur la génération de chocs forts avec l'installation laser OMEGA. Il est montré qu'une pression du choc proche de 300Mbar est atteinte près de la zone d'ablation avec une intensité laser absorbée de l'ordre de 2 X 10(15) W.cm-2 et une longueur d'onde de 351 nm. Cette valeur de la pression est deux fois plus importante que la valeur attendue en considérant une absorption collisionnelle de l'énergie laser. Cette importante différence est expliquée par la contribution d'électrons supra-thermiques générés durant l'interaction laser/plasma dans la couronne. Les modèles analytiques proposés permettent une optimisation de l'allumage par choc lorsque les paramètres de la phase d'assemblage, sont pris en compte. Les diverses approches analytiques, numériques et expérimentales sont cohérentes entre-elles. / The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. the key feature of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. in this theses, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical concerging shock wave in a pre-heated hotspot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms >>1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength ans th hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is the analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an averall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytica theory allows to des cribe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is sown that a shock presssure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 x 10(15) W:cm-2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only. That significant pressure enhancement is explained by contribution of hot-electrons generated by non-linear laser/plasma interaction in the corona. The proposed analytical models allow to optimize the shock ignition scheme, including the inuence of the implosion parameters. Analytical, numerical and experimental results are mutualy consistent.
|
Page generated in 0.0478 seconds