• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La modélisation du risque en immobilier d'entreprise / The risk modelling in the office investment market

Vu Anh Tuan, Eric 15 April 2014 (has links)
L’immobilier est un actif récalcitrant, hétérogène et illiquide, ces incertitudes constituent l`appréhension du risque en immobilier d`entreprise. Nous suggérons que le risque peut être évaluer à travers une somme de mesure de risque : en premier lieu dans une approche globale de la volatilité, ce que peut nous proposer une analyse de portefeuille, puis dans une approche plus fine, que peut nous donner la prime de risque d`un marché bureau. Notre travail doctoral se propose d’adapter les outils hérités du monde financier à l’évaluation du risque dans les principaux marchés de bureau Européen. Notre thèse sera rédigée en anglais et la question de recherche s`articulera autour de trois grands axes que nous illustrons sous forme d’articles. / The real estate asset class is tangible, heterogeneous and illiquid. It gives a specific investment universe that needs to be understood by investors, because the uncertainties created by this universe compose the risk of real estate investment. We suggest modelling risks across a sum of risk unit appraisal, on one hand, in constructing portfolio analysis, and on the other hand, through the office market risk premium modelling. Our doctoral study proposes to adapt financial theorems to risk modelling in the main European office markets. Our thesis will be written in Englishand its body will be articulated around three axes whereby those will be illustrated under the form of article.
2

Paradoxes and Priors in Bayesian Regression

Som, Agniva 30 December 2014 (has links)
No description available.
3

Improved estimation for linear models under different loss functions

Hoque, Zahirul January 2004 (has links)
This thesis investigates improved estimators of the parameters of the linear regression models with normal errors, under sample and non-sample prior information about the value of the parameters. The estimators considered are the unrestricted estimator (UE), restricted estimator (RE), shrinkage restricted estimator (SRE), preliminary test estimator (PTE), shrinkage preliminary test estimator (SPTE), and shrinkage estimator (SE). The performances of the estimators are investigated with respect to bias, squared error and linex loss. For the analyses of the risk functions of the estimators, analytical, graphical and numerical procedures are adopted. In Part I the SRE, SPTE and SE of the slope and intercept parameters of the simple linear regression model are considered. The performances of the estimators are investigated with respect to their biases and mean square errors. The efficiencies of the SRE, SPTE and SE relative to the UE are obtained. It is revealed that under certain conditions, SE outperforms the other estimators considered in this thesis. In Part II in addition to the likelihood ratio (LR) test, the Wald (W) and Lagrange multiplier (LM) tests are used to define the SPTE and SE of the parameter vector of the multiple linear regression model with normal errors. Moreover, the modified and size-corrected W, LR and LM tests are used in the definition of SPTE. It is revealed that a great deal of conflict exists among the quadratic biases (QB) and quadratic risks (QR) of the SPTEs under the three original tests. The use of the modified tests reduces the conflict among the QRs, but not among the QBs. However, the use of the size-corrected tests in the definition of the SPTE almost eliminates the conflict among both QBs and QRs. It is also revealed that there is a great deal of conflict among the performances of the SEs when the three original tests are used as the preliminary test statistics. With respect to quadratic bias, the W test statistic based SE outperforms that based on the LR and LM test statistics. However, with respect to the QR criterion, the LM test statistic based SE outperforms the W and LM test statistics based SEs, under certain conditions. In Part III the performance of the PTE of the slope parameter of the simple linear regression model is investigated under the linex loss function. This is motivated by increasing criticism of the squared error loss function for its inappropriateness in many real life situations where underestimation of a parameter is more serious than its overestimation or vice-versa. It is revealed that under the linex loss function the PTE outperforms the UE if the nonsample prior information about the value of the parameter is not too far from its true value. Like the linex loss function, the risk function of the PTE is also asymmetric. However, if the magnitude of the scale parameter of the linex loss is very small, the risk of the PTE is nearly symmetric.
4

Efficient estimation using the characteristic function : theory and applications with high frequency data

Kotchoni, Rachidi 05 1900 (has links)
The attached file is created with Scientific Workplace Latex / Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique. Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini. Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité. Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences. Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse. Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique. Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité. Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma. Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity. We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process. Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency. This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis. In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α. The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk. In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models. This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology.
5

Efficient estimation using the characteristic function : theory and applications with high frequency data

Kotchoni, Rachidi 05 1900 (has links)
Nous abordons deux sujets distincts dans cette thèse: l'estimation de la volatilité des prix d'actifs financiers à partir des données à haute fréquence, et l'estimation des paramétres d'un processus aléatoire à partir de sa fonction caractéristique. Le chapitre 1 s'intéresse à l'estimation de la volatilité des prix d'actifs. Nous supposons que les données à haute fréquence disponibles sont entachées de bruit de microstructure. Les propriétés que l'on prête au bruit sont déterminantes dans le choix de l'estimateur de la volatilité. Dans ce chapitre, nous spécifions un nouveau modèle dynamique pour le bruit de microstructure qui intègre trois propriétés importantes: (i) le bruit peut être autocorrélé, (ii) le retard maximal au delà duquel l'autocorrélation est nulle peut être une fonction croissante de la fréquence journalière d'observations; (iii) le bruit peut avoir une composante correlée avec le rendement efficient. Cette dernière composante est alors dite endogène. Ce modèle se différencie de ceux existant en ceci qu'il implique que l'autocorrélation d'ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d'observation tend vers l'infini. Nous utilisons le cadre semi-paramétrique ainsi défini pour dériver un nouvel estimateur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente sous la forme d'une combinaison linéaire optimale de deux estimateurs aux propriétés différentes, l'optimalité étant défini en termes de minimisation de la variance. Les simulations indiquent que l'estimateur shrinkage a une variance plus petite que le meilleur des deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres du modèle de microstructure. Nous clôturons ce chapitre par une application empirique basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu'il est pertinent de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus d'estimation de la volatilité. Les chapitres 2, 3 et 4 s'inscrivent dans la littérature économétrique qui traite de la méthode des moments généralisés. En effet, on rencontre en finance des modèles dont la fonction de vraisemblance n'est pas connue. On peut citer en guise d'exemple la loi stable ainsi que les modèles de diffusion observés en temps discrets. Les méthodes d'inférence basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement, on spécifie une condition de moment basée sur la différence entre la fonction caractéristique (conditionnelle) théorique et sa contrepartie empirique. Le défit ici est d'exploiter au mieux le continuum de conditions de moment ainsi spécifié pour atteindre la même efficacité que le maximum de vraisemblance dans les inférences. Ce défit a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure CGMM (continuum GMM). La fonction objectif que ces auteurs proposent est une forme quadratique hilbertienne qui fait intervenir l'opérateur inverse de covariance associé au continuum de condition de moments. Cet opérateur inverse est régularisé à la Tikhonov pour en assurer l'existence globale et la continuité. Carrasco et Florens (2000) ont montré que l'estimateur obtenu en minimisant cette forme quadratique est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance si le paramètre de régularisation (α) tend vers zéro lorsque la taille de l'échatillon tend vers l'infini. La nature de la fonction objectif du CGMM soulève deux questions importantes. La première est celle de la calibration de α en pratique, et la seconde est liée à la présence d'intégrales multiples dans l'expression de la fonction objectif. C'est à ces deux problématiques qu'essayent de répondent les trois derniers chapitres de la présente thèse. Dans le chapitre 2, nous proposons une méthode de calibration de α basée sur la minimisation de l'erreur quadratique moyenne (EQM) de l'estimateur. Nous suivons une approche similaire à celle de Newey et Smith (2004) pour calculer un développement d'ordre supérieur de l'EQM de l'estimateur CGMM de sorte à pouvoir examiner sa dépendance en α en échantillon fini. Nous proposons ensuite deux méthodes pour choisir α en pratique. La première se base sur le développement de l'EQM, et la seconde se base sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre un estimateur convergent de α optimal. Nos simulations confirment la pertinence de la calibration de α en pratique. Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles univariés ou bivariés. Nous commençons par passer en revue les propriétés de convergence et de normalité asymptotique de l'estimateur CGMM. Nous proposons ensuite des recettes numériques pour l'implémentation. Enfin, nous conduisons des simulations Monte Carlo basée sur la loi stable. Ces simulations démontrent que le CGMM est une méthode fiable d'inférence. En guise d'application empirique, nous estimons par CGMM un modèle de variance autorégressif Gamma. Les résultats d'estimation confirment un résultat bien connu en finance: le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur la volatilité. Lorsqu'on implémente le CGMM, une difficulté majeure réside dans l'évaluation numérique itérative des intégrales multiples présentes dans la fonction objectif. Les méthodes de quadrature sont en principe parmi les plus précises que l'on puisse utiliser dans le présent contexte. Malheureusement, le nombre de points de quadrature augmente exponentiellement en fonction de la dimensionalité (d) des intégrales. L'utilisation du CGMM devient pratiquement impossible dans les modèles multivariés et non markoviens où d≥3. Dans le chapitre 4, nous proposons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle" qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de ℝ^{d}. Chaque échantillon ainsi généré est utilisé pour produire un estimateur du paramètre d'intérêt. L'estimateur final que nous proposons est une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous proposons une étude par simulation et une application empirique basées sur des modèles autorégressifs Gamma. Dans l'ensemble, nous faisons une utilisation intensive du bootstrap, une technique selon laquelle les propriétés statistiques d'une distribution inconnue peuvent être estimées à partir d'un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du bootstrap. / In estimating the integrated volatility of financial assets using noisy high frequency data, the time series properties assumed for the microstructure noise determines the proper choice of the volatility estimator. In the first chapter of the current thesis, we propose a new model for the microstructure noise with three important features. First of all, our model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to increase with the sampling frequency. And thirdly, the noise may include an endogenous part, that is, a piece that is correlated with the latent returns. The main difference between this microstructure model and existing ones is that it implies a first order autocorrelation that converges to 1 as the sampling frequency goes to infinity. We use this semi-parametric model to derive a new shrinkage estimator for the integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-off by combining a consistent estimators with an inconsistent one. Simulation results show that the shrinkage estimator behaves better than the best of the two combined ones. We also propose some estimators for the parameters of the noise model. An empirical study based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for possible time dependence in the noise process. Chapters 2, 3 and 4 pertain to the generalized method of moments based on the characteristic function. In fact, the likelihood functions of many financial econometrics models are not known in close form. For example, this is the case for the stable distribution and a discretely observed continuous time model. In these cases, one may estimate the parameter of interest by specifying a moment condition based on the difference between the theoretical (conditional) characteristic function and its empirical counterpart. The challenge is then to exploit the whole continuum of moment conditions hence defined to achieve the maximum likelihood efficiency. This problem has been solved in Carrasco and Florens (2000) who propose the CGMM procedure. The objective function of the CGMM is a quadrqtic form on the Hilbert space defined by the moment function. That objective function depends on a Tikhonov-type regularized inverse of the covariance operator associated with the moment function. Carrasco and Florens (2000) have shown that the estimator obtained by minimizing the proposed objective function is asymptotically as efficient as the maximum likelihood estimator provided that the regularization parameter (α) converges to zero as the sample size goes to infinity. However, the nature of this objective function raises two important questions. First of all, how do we select α in practice? And secondly, how do we implement the CGMM when the multiplicity (d) of the integrals embedded in the objective-function d is large. These questions are tackled in the last three chapters of the thesis. In Chapter 2, we propose to choose α by minimizing the approximate mean square error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004), we derive a higher-order expansion of the estimator from which we characterize the finite sample dependence of the MSE on α. We provide two data-driven methods for selecting the regularization parameter in practice. The first one relies on the higher-order expansion of the MSE whereas the second one uses only simulations. We show that our simulation technique delivers a consistent estimator of α. Our Monte Carlo simulations confirm the importance of the optimal selection of α. The goal of Chapter 3 is to illustrate how to efficiently implement the CGMM for d≤2. To start with, we review the consistency and asymptotic normality properties of the CGMM estimator. Next we suggest some numerical recipes for its implementation. Finally, we carry out a simulation study with the stable distribution that confirms the accuracy of the CGMM as an inference method. An empirical application based on the autoregressive variance Gamma model led to a well-known conclusion: investors require a positive premium for bearing the expected risk while a negative premium is attached to the unexpected risk. In implementing the characteristic function based CGMM, a major difficulty lies in the evaluation of the multiple integrals embedded in the objective function. Numerical quadratures are among the most accurate methods that can be used in the present context. Unfortunately, the number of quadrature points grows exponentially with d. When the data generating process is Markov or dependent, the accurate implementation of the CGMM becomes roughly unfeasible when d≥3. In Chapter 4, we propose a strategy that consists in creating univariate samples by taking a linear combination of the elements of the original vector process. The weights of the linear combinations are drawn from a normalized set of ℝ^{d}. Each univariate index generated in this way is called a frequency domain bootstrap sample that can be used to compute an estimator of the parameter of interest. Finally, all the possible estimators obtained in this fashion can be aggregated to obtain the final estimator. The optimal aggregation rule is discussed in the paper. The overall method is illustrated by a simulation study and an empirical application based on autoregressive Gamma models. This thesis makes an extensive use of the bootstrap, a technique according to which the statistical properties of an unknown distribution can be estimated from an estimate of that distribution. It is thus possible to improve our simulations and empirical results by using the state-of-the-art refinements of the bootstrap methodology. / The attached file is created with Scientific Workplace Latex

Page generated in 0.0829 seconds