• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 13
  • 11
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 26
  • 21
  • 19
  • 17
  • 17
  • 17
  • 16
  • 14
  • 13
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

From Transformation to Therapeutics : Diverse Biological Applications of Shock Waves

Ganadhas, Divya Prakash January 2014 (has links) (PDF)
Chapter–I Introduction Shock waves appear in nature whenever the different elements in a fluid approach one another with a velocity larger than the local speed of sound. Shock waves are essentially non-linear waves that propagate at supersonic speeds. Such disturbances occur in steady transonic or supersonic flows, during explosions, earthquakes, tsunamis, lightening strokes and contact surfaces in laboratory devices. Any sudden release of energy (within few μs) will invariably result in the formation of shock wave since it is one of the efficient mechanisms of energy dissipation observed in nature. The dissipation of mechanical, nuclear, chemical, and electrical energy in a limited space will result in the formation of a shock wave. However, it is possible to generate micro-shock waves in laboratory using different methods including controlled explosions. One of the unique features of shock wave propagation in any medium (solid, liquid or gases) is their ability to instantaneously enhance pressure and temperature of the medium. Shock waves have been successfully used for disintegrating kidney stones, non-invasive angiogenic therapy and osteoporosis treatment. In this study, we have generated a novel method to produce micro-shock waves using micro-explosions. Different biological applications were developed by further exploring the physical properties of shock waves. Chapter – II Bacterial transformation using micro-shock waves In bacteria, uptake of DNA occurs naturally by transformation, transduction and conjugation. The most widely used methods for artificial bacterial transformation are procedures based on CaCl2 treatment and electroporation. In this chapter, controlled micro-shock waves were harnessed to develop a unique bacterial transformation method. The conditions have been optimized for the maximum transformation efficiency in E. coli. The highest transformation efficiency achieved (1 × 10-5 transformants per cell) was at least 10 times greater than the previously reported ultrasound mediated transformation (1 × 10-6 transformants per cell). This method has also been successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella Typhimurium. This novel method of transformation has been shown to be as efficient as electroporation with the added advantage of better recovery of cells, economical (40 times cheaper than commercial electroporator) and growth-phase independent transformation. Chapter – III Needle-less vaccine delivery using micro-shock waves Utilizing the instantaneous mechanical impulse generated behind the micro-shock wave during controlled explosion, a novel non-intrusive needleless vaccine delivery system has been developed. It is well established, that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle free devices for epidermal delivery have inherent problems from the perspective of patient safety and comfort. The penetration depth of less than 100 µm in the skin can elicit higher immune response without any pain. Here the efficient utilization of the device for micro-shock wave mediated vaccination was demonstrated. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. The device mediated vaccination elicits better protection as well as IgG response even in lower vaccine dose (ten-fold lesser), compare to other routes of vaccination. Chapter – IV In vitro and in vivo biofilm disruption using shock waves Many of the bacteria secrete highly hydrated framework of extracellular polymer matrix on encountering suitable substrates and get embedded within the matrix to form biofilm. Bacterial colonization in biofilm form is observed in most of the medical devices as well as during infections. Since these bacteria are protected by the polymeric matrix, antibiotic concentration of more than 1000 times of the MIC is required to treat these infections. Active research is being undertaken to develop antibacterial coated medical implants to prevent the formation of biofilm. Here, a novel strategy to treat biofilm colonization in medical devices and infectious conditions by employing shock waves was developed. Micro-shock waves assisted disintegration of Salmonella, Pseudomonas and Staphylococcus biofilm in urinary catheters was demonstrated. The biofilm treated with micro-shock waves became susceptible to antibiotics, whereas the untreated was resistant. Apart from medical devices, the study was extended to Pseudomonas lung infection model in mice. Mice exposed to shock waves responded well to ciprofloxacin while ciprofloxacin alone could not rescue the mice from infection. All the mice survived when antibiotic treatment was provided along with shock wave exposure. These results clearly demonstrate that shock waves can be used along with antibiotic treatment to tackle chronic conditions resulting from biofilm formation in medical devices as well as biological infections. Chapter – V Shock wave responsive drug delivery system for therapeutic application Different systems have been used for more efficient drug delivery as well as targeted delivery. Responsive drug delivery systems have also been developed where different stimuli (pH, temperature, ultrasound etc.) are used to trigger the drug release. In this study, a novel drug delivery system which responds to shock waves was developed. Spermidine and dextran sulfate was used to develop the microcapsules using layer by layer method. Ciprofloxacin was loaded in the capsules and we have used shock waves to release the drug. Only 10% of the drug was released in 24 h at pH 7.4, whereas 20% of the drug was released immediately after the particles were exposed to shock waves. Almost 90% of the drug release was observed when the particles were exposed to shock waves 5 times. Since shock waves can be used to induce angiogenesis and wound healing, Staphylococcus aureus skin infection model was used to show the effectiveness of the delivery system. The results show that shock wave can be used to trigger the drug release and can be used to treat the wound effectively. A brief summary of the studies that does not directly deal with the biological applications of shock waves are included in the Appendix. Different drug delivery systems were developed to check their effect in Salmonella infection as well as cancer. It was shown for the first time that silver nanoparticles interact with serum proteins and hence the antimicrobial properties are affected. In a nutshell, the potential of shock waves was harnessed to develop novel experimental tools/technologies that transcend the traditional boundaries of basic science and engineering.
82

Studium buněčné toxicity vybraných nanočástic v tkáňových kulturách. / Study of Cellular Toxicity of Representative Nanoparticles in Tissue Cultures.

Filipová, Marcela January 2020 (has links)
Safety concerns arising from cytotoxic behavior of nanoparticles (NPs) in complex biological environment remain the main problem limiting NPs application in biomedicine. In this study, we have investigated cytotoxicity of NPs with different composition, shape and size, namely SiO2 NPs (SiNPs, 7-14 nm), superparamagnetic iron oxide NPs (SPIONs, 8 nm) and carboxylated multiwalled carbon nanotubes (CNTCOOHs, diameter: 60-100 nm, length: 1-2 μm). Cytotoxicity was evaluated with newly designed screening assay capable to simultaneously assess activity of cell dehydrogenases, activity of lactate dehydrogenase (LDH) released from cells into environment and number of intact cell nuclei and apoptotic bodies in human umbilical vein endothelial cell (HUVEC) culture growing in the very same well of the 96-well plate. Aforementioned attributes were subsequently utilized to obtain information about cell viability and necrotic and apoptotic aspects of cell death. Results from this "three-in-one" cell death screening (CDS) assay showed that SiNPs and CNTCOOHs evoked pronounced cytotoxic effect demonstrated as decrease of cell viability and development of apoptotic bodies formation. In contrast to this, SPIONs induced only mild cytotoxicity. Moreover, SiNPs impaired cell membrane leading to increased LDH release...
83

Electronic Devices for the Combination of Electrically Controlled Drug Release, Electrostimulation, and Optogenetic Stimulation for Nerve Tissue Regeneration

Monreal Trigo, Javier 02 June 2023 (has links)
[ES] La capacidad de las células madre para proliferar formando distintas células especializadas les otorga la potencialidad de servir de base para terapias efectivas para patologías cuyo tratamiento era inimaginable hasta hace apenas dos décadas. Sin embargo, esta capacidad se encuentra mediada por estímulos fisiológicos, químicos, y eléctricos, específicos y complejos, que dificultan su traslación a la rutina clínica. Por ello, las células madre representan un campo de estudio en el que se invierten amplios esfuerzos por parte de la comunidad científica. En el ámbito de la regeneración nerviosa, para modular su desarrollo y diferenciación el tratamiento farmacológico, la electroestimulación, y la estimulación optogenética son técnicas que están consiguiendo prometedores resultados. Es por ello por lo que en la presente tesis se ha desarrollado un conjunto de sistemas electrónicos para permitir la aplicación combinada de estas técnicas in vitro, con perspectiva a su aplicación in vivo. Hemos diseñado una novedosa tecnología para la liberación eléctricamente controlada de fármacos. Esta tecnología está basada en nanopartículas de sílice mesoporosa y puertas moleculares de bipiridina-heparina. Las puertas moleculares son electroquímicamente reactivas, y encierran los fármacos en el interior de las nanopartículas, liberándolos ante un estímulo eléctrico. Hemos caracterizado esta tecnología, y la hemos validado mediante la liberación controlada de rodamina en cultivos celulares de HeLa. Para la combinación de liberación controlada de fármacos y electroestimulación hemos desarrollado dispositivos que permiten aplicar los estímulos eléctricos de forma configurable desde una interfaz gráfica de usuario. Además, hemos diseñado un módulo de expansión que permite multiplexar las señales eléctricas a diferentes cultivos celulares. Además, hemos diseñado un dispositivo de estimulación optogenética. Este tipo de estimulación consiste en la modificación genética de las células para que sean sensibles a la radiación lumínica de determinada longitud de onda. En el ámbito de la regeneración de tejido mediante células precursoras neurales, es de interés poder inducir ondas de calcio, favoreciendo su diferenciación en neuronas y la formación de circuitos sinápticos. El dispositivo diseñado permite obtener imágenes en tiempo real mediante microscopía confocal de las respuestas transitorias de las células al ser irradiadas. El dispositivo se ha validado irradiando neuronas modificadas con luz pulsada de 100 ms. También hemos diseñado un dispositivo electrónico complementario de medida de irradiancia con el doble fin de permitir la calibración del equipo de irradiancia y medir la irradiancia en tiempo real durante los experimentos in vitro. Los resultados del uso de los bioactuadores en procesos complejos y dinámicos, como la regeneración de tejido nervioso, son limitados en lazo abierto. Uno de los principales aspectos analizados es el desarrollo de biosensores que permitiesen la cuantización de ciertas biomoléculas para ajustar la estimulación suministrada en tiempo real. Por ejemplo, la segregación de serotonina es una respuesta identificada en la elongación de células precursoras neurales, pero hay otras biomoléculas de interés para la implementación de un control en lazo cerrado. Entre las tecnologías en el estado del arte, los biosensores basados en transistores de efecto de campo (FET) funcionalizados con aptámeros son realmente prometedores para esta aplicación. Sin embargo, esta tecnología no permitía la medición simultánea de más de una biomolécula objetivo en un volumen reducido debido a las interferencias entre los distintos FETs, cuyos terminales se encuentran inmersos en la solución. Por ello, hemos desarrollado instrumentación electrónica capaz de medir simultáneamente varios de estos biosensores, y la hemos validado mediante la medición simultánea de pH y la detección preliminar de serotonina y glutamato. / [CA] La capacitat de les cèl·lules mare per a proliferar formant diferents cèl·lules especialitzades els atorga la potencialitat de servir de base per a teràpies efectives per a patologies el tractament de les quals era inimaginable fins fa a penes dues dècades. No obstant això, aquesta capacitat es troba mediada per estímuls fisiològics, químics, i elèctrics, específics i complexos, que dificulten la seua translació a la rutina clínica. Per això, les cèl·lules mare representen un camp d'estudi en el qual s'inverteixen amplis esforços per part de la comunitat científica. En l'àmbit de la regeneració nerviosa, per a modular el seu desenvolupament i diferenciació el tractament farmacològic, l'electroestimulació, i l'estimulació optogenética són tècniques que estan aconseguint prometedors resultats. És per això que en la present tesi s'ha desenvolupat un conjunt de sistemes electrònics per a permetre l'aplicació combinada d'aquestes tècniques in vitro, amb perspectiva a la seua aplicació in vivo. Hem dissenyat una nova tecnologia per a l'alliberament elèctricament controlat de fàrmacs. Aquesta tecnologia està basada en nanopartícules de sílice mesoporosa i portes moleculars de bipiridina-heparina. Les portes moleculars són electroquímicament reactives, i tanquen els fàrmacs a l'interior de les nanopartícules, alliberant-los davant un estímul elèctric. Hem caracteritzat aquesta tecnologia, i l'hem validada mitjançant l'alliberament controlat de rodamina en cultius cel·lulars de HeLa. Per a la combinació d'alliberament controlat de fàrmacs i electroestimulació hem desenvolupat dispositius que permeten aplicar els estímuls elèctrics de manera configurable des d'una interfície gràfica d'usuari. A més, hem dissenyat un mòdul d'expansió que permet multiplexar els senyals elèctrics a diferents cultius cel·lulars. A més, hem dissenyat un dispositiu d'estimulació optogenètica. Aquest tipus d'estimulació consisteix en la modificació genètica de les cèl·lules perquè siguen sensibles a la radiació lumínica de determinada longitud d'ona. En l'àmbit de la regeneració de teixit mitjançant cèl·lules precursores neurals, és d'interés poder induir ones de calci, afavorint la seua diferenciació en neurones i la formació de circuits sinàptics. El dispositiu dissenyat permet obtindré imatges en temps real mitjançant microscòpia confocal de les respostes transitòries de les cèl·lules en ser irradiades. El dispositiu s'ha validat irradiant neurones modificades amb llum polsada de 100 ms. També hem dissenyat un dispositiu electrònic complementari de mesura d'irradiància amb el doble fi de permetre el calibratge de l'equip d'irradiància i mesurar la irradiància en temps real durant els experiments in vitro. Els resultats de l'ús dels bioactuadors en processos complexos i dinàmics, com la regeneració de teixit nerviós, són limitats en llaç obert. Un dels principals aspectes analitzats és el desenvolupament de biosensors que permeteren la quantització de certes biomolècules per a ajustar l'estimulació subministrada en temps real. Per exemple, la segregació de serotonina és una resposta identificada amb l'elongació de les cèl·lules precursores neurals, però hi ha altres biomolècules d'interés per a la implementació d'un control en llaç tancat. Entre les tecnologies en l'estat de l'art, els biosensors basats en transistors d'efecte de camp (FET) funcionalitzats amb aptàmers són realment prometedors per a aquesta aplicació. No obstant això, aquesta tecnologia no permetia el mesurament simultani de més d'una biomolècula objectiu en un volum reduït a causa de les interferències entre els diferents FETs, els terminals dels quals es troben immersos en la solució. Per això, hem desenvolupat instrumentació electrònica capaç de mesurar simultàniament diversos d'aquests biosensors i els hem validat amb mesurament simultani del pH i la detecció preliminar de serotonina i glutamat. / [EN] The stem cells' ability to proliferate to form different specialized cells gives them the potential to serve as the basis for effective therapies for pathologies whose treatment was unimaginable until just two decades ago. However, this capacity is mediated by specific and complex physiological, chemical, and electrical stimuli that complicate their translation to clinical routine. For this reason, stem cells represent a field of study in which the scientific community is investing a great deal of effort. In the field of nerve regeneration, to modulate their development and differentiation, pharmacological treatment, electrostimulation, and optogenetic stimulation are techniques that are achieving promising results. For this reason, we have developed a set of electronic systems to allow the combined application of these techniques in vitro, with a view to their application in vivo. We have designed a novel technology for the electrically controlled release of drugs. This technology is based on mesoporous silica nanoparticles and bipyridine-heparin molecular gates. The molecular gates are electrochemically reactive and entrap the drugs inside the nanoparticles, releasing them upon electrical stimulus. We have characterized this technology and validated it by controlled release of rhodamine in HeLa cell cultures. For combining electrostimulation and controlled drug release we have developed devices that allow applying the different electrical stimuli in a configurable way from a graphical user interface. In addition, we have designed an expansion module that allows multiplexing electrical signals to different cell cultures. In addition, we have designed an optogenetic stimulation device. This type of stimulation consists of genetically modifying cells to make them sensitive to light radiation of a specific wavelength. In tissue regeneration using neural precursor cells, it is interesting to be able to induce calcium waves, favoring the cell differentiation into neurons and the formation of synaptic circuits. The designed device enable the obtention of real-time images through confocal microscopy of the transient responses of cells upon irradiation. The device has been validated by irradiating modified neurons with 100 ms pulsed light stimulation. We have also designed a complementary electronic irradiance measurement device to allow calibration of the irradiator equipment and measuring irradiance in real time during in vitro experiments. The results of using bioactuators in complex and dynamic processes, such as nerve tissue regeneration, are limited in an open loop. One of the main aspects analyzed is the development of biosensors that would allow quantifying of specific biomolecules to adjust the stimulation provided in real time. For instance, serotonin secretion is an identified response of neural precursor cells elongation, among other biomolecules of interest for the implementation of a closed-loop control. Among the state-of-the-art technologies, biosensors based on field effect transistors (FETs) functionalized with aptamers are promising for this application. However, this technology did not allow the simultaneous measurement of more than one target biomolecule in a small volume due to interferences between the different FETs, whose terminals are immersed in the solution. This is why we have developed electronic instrumentation capable of simultaneously measuring several of these biosensors, and we have validated it with the simultaneous pH measurement and the preliminary detection of serotonin and glutamate. / Monreal Trigo, J. (2023). Electronic Devices for the Combination of Electrically Controlled Drug Release, Electrostimulation, and Optogenetic Stimulation for Nerve Tissue Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193841
84

Development of hydrophobic/superhydrophobic anti-fouling photopolymer coatings for PVC reactor / Développement des revêtements polymères anti-encroutant de type hydrophobe/superhydrophobe

El Fouhaili, Bandar 04 February 2014 (has links)
Lors de la polymérisation en suspension du chlorure de vinyle, il se forme sur les parois un dépôt de polychlorure de vinyle (PVC). Ce phénomène, nommé encroûtement, génère des problèmes car il limite la production de PVC et affecte la qualité du produit final. Dans ce contexte, un projet FUI (Fond Unique Interministériel) intitulé «Ecoating», a été financé dans le cadre d’une collaboration entre plusieurs partenaires industriels et universitaires (INEOS ChlorVinyls, Mäder Research, Avenir Group, LPIM, ESPCI-ParisTech). Deux thèses ont vu le jour au LPIM, avec pour but de développer un revêtement (photo)polymère aux propriétés anti-encroûtement durables qui permettrait d’améliorer la qualité du PVC produit, d’augmenter les quantités produites et ainsi d’améliorer la compétitivité des usines de PVC. Cette thèse s’inscrit dans le développement d’un vernis photopolymère répondant au cahier des charges. Pour éviter l’encroûtement des réacteurs, il est nécessaire de stopper une étape du mécanisme d’encroûtement comme l'adsorption sur les parois du réacteur d’un copolymère nommé Acvagen Graft Copolymer (AGC). Ce copolymère est très actif dans le phénomène d’encroûtement (site de nucléation) et se trouve principalement dans la phase aqueuse du milieu réactionnel. La stratégie de recherche élaborée dans ce projet a été basée sur le développement d'un revêtement photopolymère présentant une faible affinité pour l'eau et devant adhérer à la surface des réacteurs pour éviter la formation de croûte. Les polymères à base de fluoroacrylates ont été les premiers candidats choisis dans cette étude du fait que leurs propriétés exceptionnelles (faible énergie de surface, stabilité chimique et haute hydrophobicité...) pouvaient éviter l'adsorption de l'AGC sur les parois du réacteur, et par conséquent le développement de la croûte. Une recherche bibliographique a été réalisée pour comprendre le comportement particulier de ces molécules qui migrent vers la surface du film et s’organisent en surface pour donner des surfaces hydrophobes. Des mélanges de résines fluoroacryliques modèles ont été testés pour évaluer le caractère hydrophobe du revêtement, comprendre la migration des molécules de fluor vers l’interface en fonction de la nature de substrat et aussi déterminer l’influence de l’ajout d’additifs fluorés au mélange sur les propriétés globales du film. Cette étude nous a permis de comprendre l’influence de l’additif fluoré sur les propriétés chimiques et physiques du film. À l’échelle du laboratoire des tests d’immersion de ces revêtements déposés sur l’acier inoxydable ont étés réalisés dans l’eau chaude (80°C) afin de caractériser leur caractère hydrophobe en fonction du vieillissement dans l’eau chaude ainsi que l’adhésion du film au substrat. Nous avons observé une diminution de l'hydrophobicité de la surface du film au cours du temps lors d’une immersion. [...] / Our scientific approach has explored different strategies to develop a durable UV-cured coating with antifouling properties to prevent the crust formation. Firstly, the potential of fluoroacrylate photocurable coatings was exhaustively investigated. Indeed, their outstanding properties (low surface energy, chemical stability and high hydrophobicity...) could limit the adsorption of the AGC on the reactor walls and further encrusting. A bibliographic research highlighted the behavior of fluorinated monomers on film surface and the parameters affecting the hydrophobic properties. Different fluorinated monomers were selected. At low concentration, they provide hydrophobic surfaces on 316L stainless steel, the reference substrate. However, a decrease of the films surface hydrophobicity in hot water was observed with time, and was attributed to a disorganization of the fluorinated chains on the coating surface. An optimization of the amount of fluoroacrylate monomer was performed by confocal Raman microscopy (CRM) to promote the fluorinated chains stability on the surface before and after immersion in hot water at 80°C. The beneficial effect was found maximal at a concentration ranging from 1 to 1.8 wt%. However, even after this optimization, a decrease of the film surface hydrophobicity was observed for increased immersion time in hot water. Therefore, optimized fluoroacrylate monomer concentration was combined with alternated thermal/immersion post-treatment and has conducted to more stable photocured films. This result was attributed to a rigidification of the fluorinated chains on the film surface limiting thus, the extent of their disorganization. After this study realized at a laboratory scale, we tested the photocured coating in the VCM pilot reactor. A surface cleaning, an increase of the stainless steel roughness by shot blasting and the use of alkoxysilanes as coupling agents were implemented in order to enhance the adhesion properties of the photopolymer film on stainless steel. In addition, the use of a fluorinated monomer containing a heteroatom improved the rigidification when associated with the alternated thermal/immersion post-treatment. The crust formation was limited during four successive polymerizations in the VCM pilot reactor. A durable anti-fouling UV-coating could be not obtained due to some swelling phenomena resulting from the lack of coating adhesion or some abrasion occurring from small PVC pellets during the PVC polymerization.A second part of this project was dedicated to superhydrophobic coatings. Indeed, reducing interaction with water should lead to a better protection of the substrate. A literature review on the superhydrophobic surfaces has shown that the contact with hot water generally strongly affects their antiwetting properties and induces a large contact angle decrease. [...]

Page generated in 0.085 seconds