Spelling suggestions: "subject:"dimple singularity"" "subject:"5imple singularity""
1 |
Cohen-Macaulayovy moduly nad jednoduchými singularitami / Cohen-Macaulay modules over simple singularitiesZhang, Yifan January 2022 (has links)
The thesis is focused on the maximal Cohen-Macaulay modules over simple singular- ities. Previous results on the topic are summarised, and in particular it is shown that a hypersurface is MCM-finite if and only if it is a simple singularity. The stable Auslander- Reiten quivers of simple singularities are drawn for better understanding of the category of maximal Cohen-Macaulay modules over a simple singularity. 1
|
2 |
Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'Martins, Rodrigo 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
|
3 |
Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'Rodrigo Martins 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
|
4 |
Singularidades simples de curvas determinantais / Simple singularities of determinantal curvesSiesquén, Nancy Carolina Chachapoyas 27 August 2010 (has links)
Neste trabalho, estudamos a classificação de singularidades de curvas espaciais simples que não são intersecções completas. O Teorema de Hilbert-Burch nos permite usar a matriz de representação para estudar a variedade definida pelo ideal gerado por seus menores maximais. Da mesma forma, as deformações da variedade determinantal podem ser representadas por perturbações da matriz e qualquer perturbação da matriz fornece uma deformação da variedade. Assim, o estudo das singularidades de curvas determinantais pode ser formulado em termos da matriz de representação da curva / In this work, we study the classification of simple space curve singularities which are not complete intersections. The Theorem of Hilbert-Burch enables us to deal with the presentation matrices instead of the ideals defined by their maximal minors. In the same way, deformations of the determinantal variety can be represented by perturbations of the matrix and any perturbation of the matrix gives rise to a deformation of the variety. Therefore, the study of determinantal curves can be formulated in terms of the presentation matrices
|
5 |
Singularité et théorie de Lie / Singularity and Lie TheoryCaradot, Antoine 14 June 2017 (has links)
Soit Γ un sous-groupe fini de SU2(ℂ). Alors le quotient ℂ2/Γ peut être plongé dans ℂ3 sous la forme d'une surface munie d'une singularité isolée. Le quotient ℂ2/Γ est appelé singularité de Klein, d'après F. Klein qui fut le premier à les décrire en 1884. A travers leurs résolutions minimales, ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types Ar, Dr et Er. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les résolutions et les déformations de ces singularités à l'aide de la théorie de Lie. En 1998 P. Slodowy et H. Cassens ont construit les déformations semiuniverselles des ℂ2/Γ à l'aide de la théorie des carquois ainsi que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989. En théorie de Lie, la classification des algèbres de Lie simples divisent ces dernières en deux classes: les algèbres de Lie de types Ar, Dr et Er qui sont simplement lacées, et celles de types Br, Cr, F4 et G2 appelées non-homogènes. A l'aide d'un second sous-groupe fini Γ' de SU2(ℂ) tel que Γ ⊲ Γ', P. Slodowy a étendu en 1978 la notion de singularité de Klein aux algèbres de Lie non-homogènes en ajoutant à ℂ2/Γ le groupe d'automorphismes Ω= Γ'/Γ du diagramme de Dynkin associé à la singularité. L'objectif de cette thèse est de généraliser la construction de H. Cassens et P. Slodowy à ces singularités de types Br, Cr, F4 et G2. Il en résultera des constructions explicites des déformations semiuniverselles de types inhomogènes sur les fibres desquelles le groupe Ω agit. Le passage au quotient d'une telle application révèle alors une déformation d'une singularité de type ℂ2/Γ' / Let Γ be a finite subgroup of SU2(ℂ). Then the quotient ℂ2/Γ can be embedded in ℂ3 as a surface with an isolated singularity. The quotient ℂ2/Γ is called a Kleinian singularity, after F. Klein who studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection with simply-laced Dynkin diagrams of types Ar, Dr and Er. In the 1970's E. Brieskorn and P. Slodowy took advantage of this connection to describe the resolutions and deformations of these singularities in terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic geometry. In Lie theory, the classification of simple Lie algebras allows for a separation in two classes: those simply-laced of types Ar, Dr and Er, and those of types Br, Cr, F4 and G2 called inhomogeneous. With the use of a second finite subgroup Γ’ of SU2(ℂ) such that Γ ⊲ Γ’, P. Slodowy extended in 1978 the definition of a Kleinian singularity to the inhomogeneous types by adding to ℂ2/Γ the group of automorphisms Ω= Γ’/Γ of the Dynkin diagram associated to the singularity. The purpose of this thesis is to generalize H. Cassens' and P. Slodowy's construction to the singularities of types Br, Cr, F4 and G2. It will lead to explicit semiuniversal deformations of inhomogeneous types on the fibers of which the group Ω acts. By quotienting such a map we obtain a deformation of a singularity ℂ2/Γ’
|
6 |
Singularidades simples de curvas determinantais / Simple singularities of determinantal curvesNancy Carolina Chachapoyas Siesquén 27 August 2010 (has links)
Neste trabalho, estudamos a classificação de singularidades de curvas espaciais simples que não são intersecções completas. O Teorema de Hilbert-Burch nos permite usar a matriz de representação para estudar a variedade definida pelo ideal gerado por seus menores maximais. Da mesma forma, as deformações da variedade determinantal podem ser representadas por perturbações da matriz e qualquer perturbação da matriz fornece uma deformação da variedade. Assim, o estudo das singularidades de curvas determinantais pode ser formulado em termos da matriz de representação da curva / In this work, we study the classification of simple space curve singularities which are not complete intersections. The Theorem of Hilbert-Burch enables us to deal with the presentation matrices instead of the ideals defined by their maximal minors. In the same way, deformations of the determinantal variety can be represented by perturbations of the matrix and any perturbation of the matrix gives rise to a deformation of the variety. Therefore, the study of determinantal curves can be formulated in terms of the presentation matrices
|
Page generated in 0.0919 seconds