Spelling suggestions: "subject:"cistemas dde reconhecimento"" "subject:"cistemas dde deconhecimento""
41 |
Uma abordagem para a identificação automática de problemas de usabilidade em interfaces de sistemas web através de reconhecimento de padrõesSantana, Gisele Alves 11 April 2013 (has links)
CAPES / Recentemente, alguns sistemas estão sendo transferidos para a plataforma web. Muitos serviços e aplicações, incluindo sistemas de simulação e planejamento de energia e sistemas de automação, são desenvolvidos com interfaces baseadas na Internet. A usabilidade é a principal característica de uma interface e está associada com as funcionalidades de um sitema. Ela descreve o quão bem um produto pode ser utilizado para os fins propostos por seus usuários com eficácia, eficiência e satisfação. Este trabalho apresenta a aplicação de técnicas de Reconhecimento de Padrões na detecção e classificação automática de problemas de usabilidade na interface de um sistema web. O foco inicial do trabalho é centrado na identificação de possíveis problemas de usabilidade em formulários web. Os potenciais problemas de usabilidade do formulário web são definidos a partir das recomendações descritas na literatura. As tarefas realizadas pelo usuário são obtidas através da análise da interação do usuário armazenada em arquivos de log. A classificação de quais tarefas são realizadas conforme o esperado e quais são consideradas potenciais problemas de usabilidade é realizada através de uma Rede Neural Artificial. / Recently, some systems have been transferred to the web-based platform. Many services and applications, including those of power systems simulating and planning and automation systems, are developed with Internet-based interface. Usability is mainly a characteristic of the interface and is associated with the functionalities of the systems. It describes how well a product can be used for its intended purpose by its users with efficiency, effectiveness and satisfaction. This paper presents the application of pattern recognition techniques in automatic detection and classification of usability problems in the interface of a web system. The initial focus of this work is focused on identifying potential usability problems in web forms. The potential usability problems of the web form are defined based on the recommendations described in the literature. The tasks performed by the user are obtained through analysis of user interaction stored in log files. The classification of tasks which are performed as expected and what are considered potential usability problems is performed by an Artificial Neural Network.
|
42 |
Fusão biométrica com lógica nebulosa / Multimodal biometric fusion with fuzzy logicRodrigues, Ricardo Nagel 17 August 2018 (has links)
Orientador: Lee Luan Ling / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-17T04:05:46Z (GMT). No. of bitstreams: 1
Rodrigues_RicardoNagel_M.pdf: 1212348 bytes, checksum: c1f563f073688d610f7a7013a642214c (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho, apresentamos um novo método para fazer a fusão de dois sistemas biométricos unimodais. O objetivo é gerar um sistema biométrico multimodal que apresente menores taxas de erro, maior robustez e maior segurança. O método proposto pode ser usada para integrar qualquer tipo de modalidade biométrica. Desta forma, fazemos uma descrição geral do sistema multimodal proposto, sem restrição quanto ao tipo de tecnologias biométricas que serão combinadas. Após esta descrição geral, três sistemas de reconhecimento biométrico (baseados na face, impressão digital e dinâmica da digitação) são apresentados e a metodologia é testada combinando-se a face com a impressão digital e a face com a dinâmica da digitação. A fusão dos dados biométricos é feita no nível de comparação, sendo que uma das principais inovações do método proposto é que, além dos índices de similaridade, o módulo de fusão recebe também um índice de confiabilidade das amostras coletadas e um parâmetro que indica a segurança dos sistemas unimodais. Estes dados são processados através de um sistema de inferência nebuloso, produzindo um único valor de saída que é usado para decidir se o usuário é genuíno ou impostor. Novos procedimentos de testes, que simulam condições de operação adversas, foram adotados e mostraram que o método de fusão biométrica proposto apresenta vantagens quando comparado com a fusão através da regra da soma / Abstract: In this work, we present a new method for fusing two unimodal biometric systems. The objective is to create a multimodal biometric system with low error rates, high robustness and security. The proposed method can be used to combine any two kinds of biometric modalities. We make a general description of the proposed method, with no restrictions about which biometric technologies will be combined. After this general description, three biometric recognition systems (based on face, fingerprint and keystroke dynamics) are introduced and the fusion method is tested by combining face with fingerprint and face with keystroke dynamics. The biometric data fusion is performed at the matching score level. One of the main novelties of the proposed method is that, besides similarity scores, the fusion module also receives as input a sample reliability index and a parameter that indicate the security level of the unimodal biometric systems. This set of data is processed by a fuzzy inference system, producing one single output score that is used to decide if the user is either genuine or impostor. Novel test procedures, that simulate adverse operational conditions, have indicated that the proposed biometric fusion method presents some advantages when compared with the fusion using the sum rule / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
43 |
Uma metodologia para avaliação de pacotes de software biometricosSucupira Junior, Luiz Humberto Rabelo 03 August 2018 (has links)
Orientadores: Lee Luan Ling, Miguel Gustavo Lizarraga / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-03T21:35:15Z (GMT). No. of bitstreams: 1
SucupiraJunior_LuizHumbertoRabelo_M.pdf: 4415563 bytes, checksum: 641946f8af8af2fa716eea36bb57c123 (MD5)
Previous issue date: 2004 / Mestrado
|
44 |
Classificação automatica e analise de dados por redes neurais auto-organizaveisCosta, Jose Alfredo Ferreira 16 December 1999 (has links)
Orientador: Marcio Luiz de Andrade Netto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-07-25T20:20:48Z (GMT). No. of bitstreams: 1
Costa_JoseAlfredoFerreira_D.pdf: 26064111 bytes, checksum: 45919f0230fa64ef69e0d07ea0363d6c (MD5)
Previous issue date: 1999 / Resumo: Esta tese apresenta extensões ao modelo básico de rede neural auto-organizável, a rede de Kohonen (SOM), viabilizando seu uso como ferramenta de análise de agrupamentos. O SOM define, via treinamento não supervisionado, um mapeamento de um espaço p-dimensional contínuo para um conjunto discreto de vetores referência, ou neurônios, geralmente dispostos na forma de uma matriz. Cada neurônio tem a mesma dimensão do espaço de entrada, p, e o objetivo principal do treinamento é reduzir imensionalidade ao mesmo tempo em que tenta-se preservar, ao máximo, a topologia do espaço de entrada. O algoritmo SL-SOM (Self-Labeling
SOM) foi desenvolvido com o objetivo de particionar e rotular automaticamente um SOM treinado, baseando-se no gradiente dos p componentes, cuja informação é apresentada na Umatrix. Usa-se algoritmos de processamento de imagem para segmentar a U-matrix e o resultado são regiões conectadas de neurônios codificados sob o mesmo rótulo. Tais regiões definem no espaço de atributos geometrias complexas e não paramétricas, possibilitando também a classificação de novas amostras. A extensão do SL-SOM tem por objetivo descobrir e representar subclasses. O TS-SLSOM (Tree-Structured Self-Labeling SOM) gera sub-redes para cada região rotulada de neurônios na forma de uma árvore dinâmica. Não se especifica a priori o número de sub-redes para uma dada rede, e os parâmetros de cada sub-rede são funções dos parâmetros da rede 'pai', e do subconjunto de dados que será usado para treiná-Ia. Sub-redes que não apresentam subpartições são excluídas, e o conjunto de dados referente àquela sub-rede fica representado
apenas pela região rotulada de neurônios na rede 'pai'. Arranjos de neurônios do SOM de dimensões elevadas não são usados na prática por que o objetivo principal do SOM na atualidade é a visualização dos dados. Com a automação da descoberta de conhecimento e relacionamentos entre dados descritas pelo SL-SOM e TSSL- SOM, pode-se usar um arranjo dimensão igualou menor que a dimensão do espaço de entrada, e fazer com que apenas os resultados finais sejam mostrados, na forma de subgrupos
de dados, o relacionamento entre os subgrupos, etc. A principal motivação para o uso do SOM p-dimensional é a manutenção da topologia que geralmente é perdida quando diminuímos a dimensionalidade via mapeamento de um espaço p-dimensional para um espaço de menor dimensão. Define-se o U-array como uma extensão da U-matrix e propõe-se métodos de análise baseados nos métodos de segmentação utilizados em redes de dimensão I ou 2. Comparações de resultados para vários conjuntos de dados são efetuados em relação ao SOM convencional, ou alguns de seus variantes, e por métodos estatísticos e heurísticos para descoberta de agrupamentos, sendo o principal deles, o método de misturas de densidades de probabilidades usando o algoritmo Expectation Maximization. As aplicações dos resultados desta tese são inúmeras. Pode-se aplicar técnicas de análise de dados em qualquer área do
conhecimento humano que possa coletar informações. Com a disponibilidade crescente de instrumentação eletrônica capacitando aplicações diversas adquirirem dados e armazená-los em computadores, ou mesmo a imensa massa de dados e informações não estruturadas na internet, ferramentas como as descritas nesta tese, com certeza, farão parte de softwares em um futuro não distante / Abstract: This thesis presents extensions to the most used self-organizing neural network model, the Kohonen network (SOM), enabling its usage as an effective tool for cluster analysis. The SOM network defines, via unsupervised learning, a mapping of a continuos p-dimensional space to a set of model vectors, or neurons, usually arranged as a 2-D array. Each neuron has the same
dimension of the input space, p, and the main objective is dimensionality reduction while trying to preserve as much as possible the topology of the input space. The SL-SOM (Self-Labeling SOM) algorithm was developed for automatically partitioning and labeling a trained SOM network. It uses information of the p component gradient (distances) which is presented in the U-matrix. By using image processing algorithms, the obtained results are labeled and connected regions of neurons. Each region defines, in the input space, complex and nonparametric geometries which approximately describe the shape of the clusters. Classification of new objects can be performed using the established regions and the nearest neighbor rule. An extension of the SL-SOM algorithm aims to enhance the clustering process, enabling to discover sub-clusters. The TS-SL-SOM (Tree-Structured Self-Labeling SOM) algorithm generates a child network for each labeled region of the root network, and so on. The process can be seen as generation of a dynamic tree, where each node is a whole network, and which is data-driven. It is not necessary to specify the number of sub-networks for a given network in a
given height of the tree. The parameters of the child network are functions of the parameters of the father network and of the subgroup of data used to train that network. A pruning strategy cuts sub-networks (leave nodes) which do not present further partitions. High dimension output SOM networks are not frequently used because the main application of SOM is visualization of data in a form of display. With the automation of knowledge discovery and data relations by the SL-SOM and TS-SL-SOM algorithms, we can use output dimensions higher than 2 and analyze only the final results, i.e., number of clusters and their components, relationships between groups, etc. The main advantage of using high dimension output SOMs is that topology preservation is usually lost when mapping a higher input space to a lower output space. The U-array is defined as an extension of the U-matrix and methods are proposed for its segmentation in a similar fashion of those presented in the SL-SOM algorithm. The thesis also presents results of the methods for synthetic and real data sets, and some comparisons with conventional clustering approachés, such as k-means and mixtures of probability density functions with the Expectation Maximization algorithm. Applications of the methods presented in this thesis are numerous. Virtually any area which possess data could be a candidate for using some kind of mapping and thus using any of these methods. With the increasingly availability of masses of data elsewhere, in applications ranging from business to scientific tasks, or even the immense mass of unstructured data available in the internet, and decreasingly cost of memory and computers, tools as the ones presented in this thesis will be important parts of softwares in a near future / Doutorado / Doutor em Engenharia Elétrica
|
45 |
Método para contagem de pessoas em multidões utilizando múltiplas visões / Fábio Dittrich ; orientador, Alessandro Lameiras Koerich ; co-orientador ; Luiz Eduardo Soares de OliveiraDittrich, Fábio January 2011 (has links)
Dissertação (mestrado) - Pontifícia Universidade Católica do Paraná, Curitiba, 2011 / Bibliografia: f. 58-62 / Este trabalho apresenta dois métodos inovadores para contagem de pessoas em multidão que combina informações de múltiplas câmeras para mitigar o problema de oclusão, que frequentemente afeta o resultado dos métodos de contagem de pessoas que utilizam some / This work presents a novel method for people counting in crowded scenes that combines the information gathered by multiple cameras to mitigate the problem of occlusion that commonly affects the performance of counting methods using single cameras. The fir
|
46 |
Um sistema de vigilância com detecção de intrusão utilizando inteligência artificialJamundá, Teobaldo January 2002 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação. / Made available in DSpace on 2012-10-19T15:25:25Z (GMT). No. of bitstreams: 1
194324.pdf: 2807374 bytes, checksum: 1d17f90a630b54ba3339e8ed1c71696d (MD5) / O desenvolvimento de sistemas inteligentes com visão computacional permite realizar o reconhecimento de objetos, tornando esses sistemas capazes de responder a modificações no ambiente em que operam. Neste contexto, este trabalho propõe um sistema de vigilância inteligente, baseado no emprego de uma rede neural artificial (RNA), para verificar se o objeto em movimento em determinada cena é uma pessoa. Após extrair-se o objeto a ser analisado pela RNA através de técnicas de processamento de imagem, obtém-se a partir do contorno os descritores da Transformada Discreta de Fourier (DFT), que são apresentados à RNA. Estes estímulos, descritores da DFT, são propagados através de uma rede neural previamente treinada, gerando como resultado um vetor que se refere ao objeto reconhecido, e, se for o caso, alertando que um ser humano está transitando no ambiente monitorado.
|
47 |
Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeosKami, Guilherme José da Costa [UNESP] 05 August 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-08-05Bitstream added on 2014-06-13T19:38:57Z : No. of bitstreams: 1
kami_gjc_me_sjrp.pdf: 1342570 bytes, checksum: 240c6d6b92fda1861dfbed94c9213a10 (MD5) / As técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores / The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers
|
48 |
Reconhecimento de pessoas por meio da região interna da írisRogéri, Jonathan Gustavo [UNESP] 10 May 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-05-10Bitstream added on 2014-06-13T19:38:58Z : No. of bitstreams: 1
rogeri_jg_me_sjrp.pdf: 962940 bytes, checksum: 5f86f6439d28c1cc69d98e55069b9b90 (MD5) / Nos últimos anos, a segurança tornou-se uma preocupação constante da grande maioria das pessoas. Os sistemas biométricos vem ganhando destaque em soluções ligadas à segurança, uma vez que tratam de características físicas e comportamentais para reconhecimento dos indivíduos e permissões de acesso. Este trabalho objetivou a proposição e implementação de um método para reconhecimento de indivíduos por meio de características contidas na região interna da íris com um alto percentual de exatidão no reconhecimento e uma grande diminuição no tempo de processamento, se comparado aos demais métodos encontrados na literatura. No método proposto foram utilizados operadores de morfologia matemática para localização da íris, wavelet de log-Gabor para extração das características e a distância de Hamming para o reconhecimento. Os resultados experimentais obtidos utilizando a base de dados CASIA mostraram que o método é confiável e seguro, além de se destacar com relação ao baixo custo computacional / In the recent years, the security became a constant concern of most people. Biometric systems have been highlighted in solutions related to security, since they deal with physical and behavioral characteristics for individuals recognition and access permissions. This work aims at the implementation of a method for individuals recognition based on the characteristics of the inner region of the iris, seeking a high percentage of accuracy in the recognition and a great reduction in the processing time, as compared to other methods published so far. We use mathematical morphology to search the iris in the image, the log-Gabor wavelet for feature extraction and the Hamming distance for recognition. The experimental results obtained from CASIA database show that the method is safe and reliable, and stand out with regard to the low computational cost
|
49 |
Processamento e análise de vídeos utilizando floresta de caminhos ótimos /Martins, Guilherme Brandão. January 2016 (has links)
Orientador: João Paulo Papa / Coorientador: Jurandy Gomes de Almeida Junior / Banca: Fábio Faria / Banca: José Remo Ferreira Brega / Resumo: Com os avanços relacionados às tecnologias de redes computacionais e armazenamento de dados observa-se que, atualmente, uma grande quantidade de conteúdo digital está sendo disponibilizada via internet, em especial por meio de redes sociais. A fim de explorar esse contexto, abordagens relacionadas ao processamento e apredizado de padrões em vídeos têm recebido crescente atenção nos últimos anos. Sistemas de recomendação de filmes, amplamente empregados em lojas virtuais, são umas das principais aplicações no que se refere aos avanços de pesquisa na área de processamento de vídeos. Com o objetivo de acelerar o processo de recomendação e redução de armazenamento, técnicas para classificação e sumarização de vídeos por meio de aprendizado de máquina têm sido utilizadas para explorar conteúdo informativo e também redundante. Por meio de técnicas de agrupamento e descrição de dados, é possível identificar quadros-chave de um conjunto de amostras a fim de que, posteriormente, estes sejam usados para sumarização do vídeo. Além disso, por meio de bases de vídeos rotulados, podemos classificar amostras de modo a organizá-las por gêneros de vídeo. O presente trabalho objetiva utilizar o classificador Floresta de Caminhos Ótimos para sumarização automática e classificação de vídeos por gênero, bem como o estudo de sua viabilidade nestes contextos. Os resultados obtidos mostram que o referido classificador obteve desempenho bastante promissor e próximo à algumas das técnicas de sumarização automática e classificação de vídeos que, atualmente, representam o estado-da-arte no atual contexto / Abstract: Currently, a number of improvements related to computational networks and data storage technologies have allowed a considerable amount of digital content to be provided on the internet, mainly through social networks. In order to exploit this context, video processing and pattern recognition approaches have received a considerable attention in the last years. Movie recommendation systems are widely employed in virtual stores, thus being one of the main applications regarding to research advances in the video processing field. Aiming to boost the content recommendation and storage cutback, different video categorization and video summarization techniques have been applied to handle with more informative and redundant content. By availing clustering and data description techniques, it is possible to identify keyframes from a given samples set in order to consider them as part of the video summarization process. Furthermore, through labeled video data collections it is possible to classify samples in order to arrange them by video genres. The main goal of this work is to employ the Optimum-Path Forest classifier in both video summarization and video genre classification processes as well as to conduct a viability study of such classifier in the aforementioned contexts. The results have shown this classifier can achieve promising performance, being very close in terms of summary quality and consistent recognition rates to some state-of-the-art video summarization and classification approaches / Mestre
|
50 |
Segmentação de pele em imagens digitais para a detecção automática de conteúdo ofensivoKuiaski, Diogo Rosa 25 February 2010 (has links)
CAPES; UOL / O presente trabalho tem como objetivo estudar meios de efetuar a detecção automática de conteúdo ofensivo (pornografia) em imagens digitais. Para tal estudou-se largamente segmentação de pixels de pele, espaços de cor e descritores de conteúdo. Esse trabalho tem um foco maior na segmentação de pele, pois é a etapa primordial nos trabalhos envolvendo detecção de conteúdo ofensivo. Testou-se quatro métodos de segmentação de pixels de pele e foi construído um banco de dados estruturado para o estudo de segmentação de pele, com meios de anotação de imagens para auxiliar na estruturação e no controle das características das imagens do banco. Com o auxílio das metainformações do banco de imagens, foram conduzidos estudos envolvendo as condições de iluminação e a segmentação de pele. Por fim, foi implementado um algoritmo de extração de características em sistemas de classificação pelo conteúdo de imagens (CBIR) para detecção de conteúdo ofensivo. / This work presents a study of suitable approaches for automatic detection of offensive content (pornography) in digital images. Extensive experiments were conducted for skin pixel segmentation, colour spaces and content descriptors. This work focus its efforts on skin pixel segmentation, since this segmentation is the pre-processing stage for almost every content-based offensive image classification methods in the literature. Four skin skin segmentation methods were tested in six colour spaces. Also, a structured image database was built to help improve studies in skin segmentation, with the possibility of adding meta-information to the images in the database, such as illumination conditions and camera standards. With the help of meta information from the image database, experimets involving illumination conditions and skin colour segmentation were also done. Finally, some feature extraction algorithms were implemented in order to apply content-based image retrieval (CBIR) algorithms to classify offensive images.
|
Page generated in 0.1148 seconds