• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • Tagged with
  • 22
  • 22
  • 22
  • 22
  • 13
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estrutura de diagramas de fase de sistemas dinâmicos de tempo contínuo

Bonatto, Cristian January 2008 (has links)
Este trabalho trata da investigação do espaço de parâmetros de sistemas dinâmicos não-lineares de tempo contínuo. A análise é focada essencialmente em regiões de alta complexidade dinâmica; contendo as fases caóticas e regiões de peíodos altos. O objetivo não é uma análise completa da estrutura de bifurcações existentes, mas sim a investigação da estrutura e organização das regiões periódicas que existem encaixadas em meio às fases caóticas. Investigamos aqui alguns modelos físicos dissipativos, descritos por equações diferenciais ordinárias não-lineares de baixa ordem, como um laser de CO2 com perdas moduladas, um laser de semicondutor com injeção óptica, um circuíto eletrônico e o oscilador de Duffing. Investigamos a estrutura fina das regiões caóticas e reportamos algumas regularidades previamente não conhecidas no espaço de parâmetros de sistemas dinâmicos de tempo contínu. Em particular, mostramos a existência de vários tipos de estrutuaas e auto-similares, acumulações de estruturas auto-similares com adição de período; hierarquia de espirais em um sistema com simetria e recorrências nas fases caóticas no espaço de dois parâmetros de equações diferênciais não-lineares. Algumas destas regularidades poderiam ser verificadas experimentalmente para os sistemas investigados. A análise é baseada na computação de diagmmas de fase obtidos pela integração direta dos sisternas de equações diferenciais ordinárias não-lineares e estimativa numérica dos expoentes de Lyapunov. Os expoentes de Lyapunov selo codificados em urna conveniente metodologia que desenvolvemos. A metodologia que utilizamos aqui poderia ser uma alternativa aos métodos de continuação numérica largamente utilizados no estudo do espaço de parâmetros de equações diferenciais. / This work deals with the investigation of the paraneter space of continuous-time nonlinear dynamical systems. The analysis is focused mainly in regions of high dynamical complexity, containing the chaotic phases and regions of high periods. The goal is not a complete analysis of the bifurcation struture, but the investigation of the structure and organization of periodic regions that exist ernbedded in the chaotic phases. We investigate here some dissipative physical models, described by low-order nonlinear differential equations, such as a CO2 laser with modulated losses, a semiconductor laser with optical injection, an electmnic Circuit and the Duffing oscillator. We investigate the fine structure of the chaotic regions and we report some regularities previously unknown in the pamrneter space of continuous-time dynamical systems. In particular, we show the existence of several kinds of self-smilar structures, accumuations of self-similar stuctures with period adding, hierarchy af spirals in a system with symetry and recurrences in the chaotic phases in the two-parameter space of nonlinear differential equations. Some of these regularities could be verified experimentally for the investigated systems. The analysis is based on the computation of phase diagrams obtained by direct time integration of systems of nonlinear ordinary differential equations and numerical estimation of the Lyapunov exponents. The Lyapunov exponents are encoded in a convenient methodology that we developed. The methodology used here could be an altemative to the numerical continuation methods widely used in the study of the parameter space of nonlinear differential equations.
2

Estrutura de diagramas de fase de sistemas dinâmicos de tempo contínuo

Bonatto, Cristian January 2008 (has links)
Este trabalho trata da investigação do espaço de parâmetros de sistemas dinâmicos não-lineares de tempo contínuo. A análise é focada essencialmente em regiões de alta complexidade dinâmica; contendo as fases caóticas e regiões de peíodos altos. O objetivo não é uma análise completa da estrutura de bifurcações existentes, mas sim a investigação da estrutura e organização das regiões periódicas que existem encaixadas em meio às fases caóticas. Investigamos aqui alguns modelos físicos dissipativos, descritos por equações diferenciais ordinárias não-lineares de baixa ordem, como um laser de CO2 com perdas moduladas, um laser de semicondutor com injeção óptica, um circuíto eletrônico e o oscilador de Duffing. Investigamos a estrutura fina das regiões caóticas e reportamos algumas regularidades previamente não conhecidas no espaço de parâmetros de sistemas dinâmicos de tempo contínu. Em particular, mostramos a existência de vários tipos de estrutuaas e auto-similares, acumulações de estruturas auto-similares com adição de período; hierarquia de espirais em um sistema com simetria e recorrências nas fases caóticas no espaço de dois parâmetros de equações diferênciais não-lineares. Algumas destas regularidades poderiam ser verificadas experimentalmente para os sistemas investigados. A análise é baseada na computação de diagmmas de fase obtidos pela integração direta dos sisternas de equações diferenciais ordinárias não-lineares e estimativa numérica dos expoentes de Lyapunov. Os expoentes de Lyapunov selo codificados em urna conveniente metodologia que desenvolvemos. A metodologia que utilizamos aqui poderia ser uma alternativa aos métodos de continuação numérica largamente utilizados no estudo do espaço de parâmetros de equações diferenciais. / This work deals with the investigation of the paraneter space of continuous-time nonlinear dynamical systems. The analysis is focused mainly in regions of high dynamical complexity, containing the chaotic phases and regions of high periods. The goal is not a complete analysis of the bifurcation struture, but the investigation of the structure and organization of periodic regions that exist ernbedded in the chaotic phases. We investigate here some dissipative physical models, described by low-order nonlinear differential equations, such as a CO2 laser with modulated losses, a semiconductor laser with optical injection, an electmnic Circuit and the Duffing oscillator. We investigate the fine structure of the chaotic regions and we report some regularities previously unknown in the pamrneter space of continuous-time dynamical systems. In particular, we show the existence of several kinds of self-smilar structures, accumuations of self-similar stuctures with period adding, hierarchy af spirals in a system with symetry and recurrences in the chaotic phases in the two-parameter space of nonlinear differential equations. Some of these regularities could be verified experimentally for the investigated systems. The analysis is based on the computation of phase diagrams obtained by direct time integration of systems of nonlinear ordinary differential equations and numerical estimation of the Lyapunov exponents. The Lyapunov exponents are encoded in a convenient methodology that we developed. The methodology used here could be an altemative to the numerical continuation methods widely used in the study of the parameter space of nonlinear differential equations.
3

Estrutura de diagramas de fase de sistemas dinâmicos de tempo contínuo

Bonatto, Cristian January 2008 (has links)
Este trabalho trata da investigação do espaço de parâmetros de sistemas dinâmicos não-lineares de tempo contínuo. A análise é focada essencialmente em regiões de alta complexidade dinâmica; contendo as fases caóticas e regiões de peíodos altos. O objetivo não é uma análise completa da estrutura de bifurcações existentes, mas sim a investigação da estrutura e organização das regiões periódicas que existem encaixadas em meio às fases caóticas. Investigamos aqui alguns modelos físicos dissipativos, descritos por equações diferenciais ordinárias não-lineares de baixa ordem, como um laser de CO2 com perdas moduladas, um laser de semicondutor com injeção óptica, um circuíto eletrônico e o oscilador de Duffing. Investigamos a estrutura fina das regiões caóticas e reportamos algumas regularidades previamente não conhecidas no espaço de parâmetros de sistemas dinâmicos de tempo contínu. Em particular, mostramos a existência de vários tipos de estrutuaas e auto-similares, acumulações de estruturas auto-similares com adição de período; hierarquia de espirais em um sistema com simetria e recorrências nas fases caóticas no espaço de dois parâmetros de equações diferênciais não-lineares. Algumas destas regularidades poderiam ser verificadas experimentalmente para os sistemas investigados. A análise é baseada na computação de diagmmas de fase obtidos pela integração direta dos sisternas de equações diferenciais ordinárias não-lineares e estimativa numérica dos expoentes de Lyapunov. Os expoentes de Lyapunov selo codificados em urna conveniente metodologia que desenvolvemos. A metodologia que utilizamos aqui poderia ser uma alternativa aos métodos de continuação numérica largamente utilizados no estudo do espaço de parâmetros de equações diferenciais. / This work deals with the investigation of the paraneter space of continuous-time nonlinear dynamical systems. The analysis is focused mainly in regions of high dynamical complexity, containing the chaotic phases and regions of high periods. The goal is not a complete analysis of the bifurcation struture, but the investigation of the structure and organization of periodic regions that exist ernbedded in the chaotic phases. We investigate here some dissipative physical models, described by low-order nonlinear differential equations, such as a CO2 laser with modulated losses, a semiconductor laser with optical injection, an electmnic Circuit and the Duffing oscillator. We investigate the fine structure of the chaotic regions and we report some regularities previously unknown in the pamrneter space of continuous-time dynamical systems. In particular, we show the existence of several kinds of self-smilar structures, accumuations of self-similar stuctures with period adding, hierarchy af spirals in a system with symetry and recurrences in the chaotic phases in the two-parameter space of nonlinear differential equations. Some of these regularities could be verified experimentally for the investigated systems. The analysis is based on the computation of phase diagrams obtained by direct time integration of systems of nonlinear ordinary differential equations and numerical estimation of the Lyapunov exponents. The Lyapunov exponents are encoded in a convenient methodology that we developed. The methodology used here could be an altemative to the numerical continuation methods widely used in the study of the parameter space of nonlinear differential equations.
4

Bifurcação de Hopf e seu controle em memórias associativas caóticas

TIBA, André Kunio de Oliveira 02 March 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2015-05-14T12:16:19Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_biblioteca_2_AndreTiba.pdf: 1261765 bytes, checksum: 8c049182f9eab69fed4ee44413d59be6 (MD5) / Made available in DSpace on 2015-05-14T12:16:19Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_biblioteca_2_AndreTiba.pdf: 1261765 bytes, checksum: 8c049182f9eab69fed4ee44413d59be6 (MD5) Previous issue date: 2015-03-02 / As Memórias Associativas (MAs) são utilizadas para modelar diversos sistemas dinâmicos, com grande aplicação em armazenamento e recuperação de memórias. Porém, as MAs tradicionais são incapazes de modelar comportamentos caóticos. Por outro lado, a Memória Associativa Caótica (MAC), com neurônios caóticos proposto por Aihara, possui tal capacidade. O neurônio desta rede é formado por dois estados distintos: um externo, que compreende a saída do neurônio; outro interno, formado por um vetor bidimensional simplificado de variáveis de estado, que independe de atrasos temporais. O comportamento caótico ocorre neste estado interno da MAC. Os modelos de MAC, autoassociativos ou heteroassociativos, têm sido fonte de pesquisa, principalmente quanto ao estudo do caos e de seu controle. Porém, as MACs são sistemas suficientemente complexos, capazes de apresentar diversos outros tipos de comportamentos dinâmicos, tais como periodicidade, convergência assintótica, bifurcações diversas etc... Um comportamento dinâmico presente com frequência em sistemas não lineares multidimensionais é aquele ligado ao surgimento/desaparecimento de ciclos limites, estáveis ou instáveis. Em outras palavras: Bifurcação de Hopf (BH). Muitos trabalhos na literatura tratam do estudo analítico da presença da BH em Memórias Associativas Bidirecionais com atraso, realizando a prova analítica da existência e da estabilidade da BH. Este tipo de tarefa apenas é possível em sistemas de baixa dimensão devido às dificuldades decorrentes da prova analítica. De forma análoga, esta Tese teve como objetivo principal a realização da prova analítica da existência e da estabilidade da BH em uma MAC de baixa dimensão, treinada para armazenar um conjunto de memórias. Outros trabalhos já realizaram estudos numéricos da BH em modelos de MACs autoassociativas, porém este é o primeiro a realizar uma abordagem analítica. Além do tratamento analítico, este estudo consistiu ainda: na verificação numérica da presença da Bifurcação de Hopf; na análise das mudanças na capacidade de recuperação de memórias, quando a BH esteve presente na rede; e, por fim, na realização do controle da bifurcação para um conjunto de metas pré-estabelecidas, como a translação do ponto crítico e a mudança da estabilidade da bifurcação. Os resultados deste estudo mostraram ainda que: i) outros parâmetros da MAC, além daquele escolhido como parâmetro de bifurcação, podem ser utilizados como parâmetro de bifurcação; ii) as MACs podem apresentar bifurcações mais complexas, tais como as Bifurcações de Codimensão 2; iii) a presença da BH afeta intensamente a capacidade de recuperação das memórias armazenadas na rede; iv) os métodos de controle, Filtro Washout e Controle Polinomial, utilizados para o controle da BH foram capazes de realizar as metas estabelecidas, porém o Filtro Washout foi mais preciso que o Controle Polinomial. / The Associative Memories (AMs) are used to model different dynamic systems, with wide application in storing and retrieving memories. But traditional MAs are unable to model chaotic behavior. On the other hand, Chaotic Associative Memory (CAM) with chaotic neurons proposed by Aihara, has such capability. The chaotic neuron of CAM is formed by two distinct states: one external that comprises the network output; another internal, formed by a simplified twodimensional vector of state variables which no dependency on time delays. The chaotic behavior occurs in this internal state of the CAM. CAM models, autoassociative or heteroassociative, has been object of research mainly on the study of chaos and its control. However, the CAMs are complex systems able to present several other types of dynamic behavior such as periodicity, asymptotic convergence, various types of bifurcation, etc ... A common dynamical behavior in multidimensional nonlinear systems is that one linked to the emergence / disappearance of stable or unstable limite cycles. In other words: Hopf Bifurcation. More recently, many studies in the literature dealing with the analytical study of the presence of Hopf Bifurcation in Bidirectional Associative Memories with time delay, performing the analytical proof of the existence and stability of Hopf Bifurcation. This type of study is only possible in low-dimensional systems since the difficulty of analytic proof at high dimension systems. Similarly, this thesis aimed to realize the analytical proof of the existence and stability of Hopf Bifurcation in a low dimensional CAM trained to store a set of memories. Other studies in CAMs had been performed only the numerical analysis of the Hopf Bifurcation, however this is the first to perform an analytical approach. In addition to the analytical treatment, this study included: the numerical existence of the Hopf Bifurcation; the analysis of changes in the retrieval capability of learned memories in the Hopf Bifurcation presence; and finally, the bifurcation control to a set of established goals, such as the translation of the critical point and the change of the bifurcation stability. The results of this study also showed that: i) the four free parameters of CAM could be used as the bifurcation parameter; ii) the CAM may have more complex bifurcations Bifurcations such as Codimension 2 bifurcations; iii) the presence of Hopf Bifurcation affects the the retrieval capability of stored memories in the network; iv) Washout Filter and Polynomial Controller were used to translation the critical point goal and for change of stability goal, and Washout Filter was more accurate than Polynomial Controller.
5

Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Vidmar, Rodrigo January 2017 (has links)
Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica. / The hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
6

Estudo numérico e experimental da dinâmica não-linear de um giroscópio / Numerical and experimental study of gyroscope nonlinear dynamics

Silva, Rosiney Desidério da 26 November 2012 (has links)
Made available in DSpace on 2017-07-10T17:11:52Z (GMT). No. of bitstreams: 1 Texto completo - Rosiney.pdf: 7631119 bytes, checksum: 43c0461bb49060121b74d945a88d53d4 (MD5) Previous issue date: 2012-11-26 / The present work proposes a study of the dynamics of a gyroscope using simulated data of an analytical model by comparing with experimental data. Classical mechanical modeling approaches are used to identify the equilibrium points, stability and verification of the regions where the motion equations of the gyroscope can present regular or chaotic behavior. The Lyapunov exponents are identified through the standard method, Eckmann-Ruelle Method, Wolf method with time series and the 0-1 test. The results achieved illustrate the main advantages and drawbacks of each method and allow to observe qualitatively and quantitatively information about the motion of the gyroscope used. / Este trabalho propõe um estudo da dinâmica de um giroscópio usando dados de simulação de um modelo analítico comparando com dados experimentais. Verifica-se a modelagem usando mecânica clássica, estudo de pontos de equilíbrio, estabilidade e verificação de regiões onde o movimento do giroscópio pode ficar regular ou caótico. Os expoentes de Lyapunov são identificados usando o método padrão, método de Eckmann-Ruelle, método deWolf com séries temporais e o teste 0-1. Os resultados alcançados nesta dissertação permitiram comparar as principais vantagens e desvantagens de cada um dos métodos e extrair informações qualitativas e quantitativas sobre o movimento do giroscópio em estudo.
7

Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Vidmar, Rodrigo January 2017 (has links)
Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica. / The hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
8

Taxa de atração para equações de reação-difusão com difusão grande localizada

Pires, Leonardo 07 March 2013 (has links)
Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1 4919.pdf: 1156949 bytes, checksum: 7bb2e0b2108c5d828760fd46f601613a (MD5) Previous issue date: 2013-03-07 / Universidade Federal de Minas Gerais / In this work we study the nonlinear asymptotical dynamics of a semilinear reactiondiffusion equation of parabolic type, when the diffusion coefficient becomes very large in a subregion Ω0 which is interior to the physical domain Ω. We obtain, under suitable assumptions, that the family of attractors behave continuously with respect to a rate of attraction. / Neste trabalho estudamos a dinâmica assintótica não linear de problemas parabólicos semilineares do tipo reação-difusão considerando que o coeficiente de difusão torna-se grande em uma sub-região Ω0 que é interior ao domínio físico Ω. Obtemos, sob determinadas hipóteses, que a família de atratores se comporta continuamente com relação a uma taxa de atração.
9

Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Vidmar, Rodrigo January 2017 (has links)
Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica. / The hydrodynamic version of the Schrödinger equation nonlinear and nonlocal will be explored, describing Bose-Einstein condensates with long-range self-interactions. Such systems have aroused interest with a view to pursuing the realization of Bose-Einstein condensation without an external confining potential and in which local atomic interactions are not enough. For the hydrodynamic description, the eikonal decomposition of the wave function is used, reducing the problem to one equation of continuity and to a transport of momentum equation. The latter is similar to the Euler equation in ideal fluid but containing an effective quantum potential and a nonlocal term, which comes from the atomic interaction. Such fluid equations translate, respectively, conservation of probability and total momentum. The hydrodynamic method will allow the study of elementary excitations, including Bogoliubov modes according to a macroscopic approach.
10

Método variacional dependente do tempo para a equação de Schrödinger não linear e não-local em condensados de Bose-Einstein / Time-dependent variational method for the non-linear and non-local Schrödinger equation in Bose-Einstein condensates

Soares, Luiz Gustavo Ferreira January 2016 (has links)
Condensação de Bose-Einstein é um fenômeno quântico que pode ser observado macroscopicamente. Para a sua obtenção são necessários aprisionamentos externos, porém a presença desses leva ao colapso da função de onda. As interações de longo alcance são propostas como uma forma alternativa ao confinamento externo, um vez que podem prevenir o colapso da função de onda. Neste trabalho será apresentada uma revisão sobre os estudos de condensados de Bose-Einstein. Também, será buscada a solução aproximada da equação de Schrödinger não linear e não-local, a qual descreve condensados de Bose-Einstein com auto-interações de longo alcance. Para isso, será suposta uma forma espacial da função de onda, permitindo o tratamento analítico do sistema dinâmico resultante. Ao fim, por meio do método variacional dependente do tempo, será demonstrado que existem soluções estáveis para a função de onda sujeito a interações de longo alcance na forma gaussiana e gravitacional. / Bose-Einstein condensation is a quantum phenomenon that can be observed macroscopically. External trappings are required to obtain them, however the presence of these leads to the collapse of the wave function. Long-range interactions are proposed as an alternative to external confinement, since they can prevent the collapse of the wave function. In this work a review will be presented on the Bose-Einstein condensate studies. Also, we review the approximate solution of the non-linear and non-local Schrödinger equation, which describes Bose-Einstein condensates with long-range auto-interactions. For this, a spatial form of the wave function will be assumed, allowing the analytical treatment of the system. Finally, through the time-dependent variational method, it will be demonstrated that there are stable solutions for the wave function subject to long-range interactions in gaussian and gravitational form.

Page generated in 0.1474 seconds