• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariate Statistical Process Control and Case-Based Reasoning for situation assessment of Sequencing Batch Reactors

Ruiz Ordóñez, Magda Liliana 16 June 2008 (has links)
ABSRACTThis thesis focuses on the monitoring, fault detection and diagnosis of Wastewater Treatment Plants (WWTP), which are important fields of research for a wide range of engineering disciplines. The main objective is to evaluate and apply a novel artificial intelligent methodology based on situation assessment for monitoring and diagnosis of Sequencing Batch Reactor (SBR) operation. To this end, Multivariate Statistical Process Control (MSPC) in combination with Case-Based Reasoning (CBR) methodology was developed, which was evaluated on three different SBR (pilot and lab-scales) plants and validated on BSM1 plant layout. / ENEsta tesis se enfoca en la monitorización, detección de defectos y diagnosis de Plantas de Tratamiento de Aguas Residuales (Wastewater Treatment Plants - WWTP), el cual son importantes campos de investigación par un amplio rango de disciplinas en Ingeniería.El objetivo principal es evaluar y aplicar una metodología novel de inteligencia artificial basada en evaluación, monitorización y diagnosis de la operación de Reactores de secuencia por lotes (Sequencing Batch Reactor -SBR). Para lograr este fin, se desarrolla una metodología que combina Control de Procesos Multivariable (Multivariate Statistical Process Control -MSPC) con Razonamiento Basado en Casos (Case-Based Reasoning -CBR)., el cual se evalúa en tres diferentes plantas SBR y se valida en una planta BSM1.
2

Problem Detection for Situation Assessment in Case-Based Reasoning for Diabetes Management

Miller, Wesley A. 13 August 2009 (has links)
No description available.
3

The effects of real-time image-based feedback on data gathering and analysis: The case of emergency management decision-making

McGuirl, John M. 07 January 2008 (has links)
No description available.
4

Situation Assessment in a Stochastic Environment using Bayesian Networks / Situationsuppfattning med Bayesianska nätverk i en stokastisk omgivning.

Ivansson, Johan January 2002 (has links)
The mental workload for fighter pilots in modern air combat is extremely high. The pilot has to make fast dynamic decisions under high uncertainty and high time pressure. This is hard to perform in close encounters, but gets even harder when operating beyond visual range when the sensors of an aircraft become the pilot's eyes and ears. Although sensors provide good estimates for position and speed of an opponent, there is a big loss in the assessment of a situation. Important tactical events or situations can occur without the pilot noticing, which can change the outcome of a mission completely. This makes the development of an automated situation assessment system very important for future fighter aircraft. This Master Thesis investigates the possibilities to design and implement an automated situation assessment system in a fighter aircraft. A Fuzzy-Bayesian hybrid technique is used in order to cope with the stochastic environment and making the development of the tactical situations library as clear and simple as possible.
5

Visualising uncertainty in aircraft cockpits : Is icon degradation an appropriate visualisation form

Kolbeinsson, Ari January 2013 (has links)
Visualising uncertainty information has been a research area for the past decade or so, and this thesis contains the results of an experiment that examines whether prior research on icon degradation for showing uncertainty can be used in a simulated aircraft cockpit environment. Using icon degradation has been suggested as being effective to combat overconfidence bias, as well as to accurately convey information about uncertainty. Two icon sets using icon degradation were taken from prior research, and one new icon set using shape change and colour change was created for comparison. Subjects flew a flight simulator while reading icons to evaluate the uncertainty displayed, and also evaluating their own confidence in their reading. The results show that shape change leads to much higher accuracy in reading icons, and slightly higher levels of confidence. Furthermore, icon degradation results in a higher variance in reading icons and an increase in errors when no time-pressure or distraction is present. This suggests that the suitability of icon degradation for showing uncertainty is questionable in all situations, and that other design approaches such as shape change should be considered. Furthermore, problems were uncovered in the prior research that the old icons were taken from, and these problems call into question the general approach used in that research. Keywords: Uncertainty visualisation, Naturalistic decision-making, NDM, Aviation, Aircraft cockpit, Decision support, Situation assessment, Threat assessment.
6

Situation Assessment in a Stochastic Environment using Bayesian Networks / Situationsuppfattning med Bayesianska nätverk i en stokastisk omgivning.

Ivansson, Johan January 2002 (has links)
<p>The mental workload for fighter pilots in modern air combat is extremely high. The pilot has to make fast dynamic decisions under high uncertainty and high time pressure. This is hard to perform in close encounters, but gets even harder when operating beyond visual range when the sensors of an aircraft become the pilot's eyes and ears. Although sensors provide good estimates for position and speed of an opponent, there is a big loss in the assessment of a situation. Important tactical events or situations can occur without the pilot noticing, which can change the outcome of a mission completely. This makes the development of an automated situation assessment system very important for future fighter aircraft. </p><p>This Master Thesis investigates the possibilities to design and implement an automated situation assessment system in a fighter aircraft. A Fuzzy-Bayesian hybrid technique is used in order to cope with the stochastic environment and making the development of the tactical situations library as clear and simple as possible.</p>
7

Petri nets for situation recognition

Dahlbom, Anders January 2011 (has links)
Situation recognition is a process with the goal of identifying a priori defined situations in a flow of data and information. The purpose is to aid decision makers with focusing on relevant information by filtering out situations of interest. This is an increasingly important and non trivial problem to solve since the amount of information in various decision making situations constantly grow. Situation recognition thus addresses the information gap, i.e. the problem of finding the correct information at the correct time. Interesting situations may also evolve over time and they may consist of multiple participating objects and their actions. This makes the problem even more complex to solve. This thesis explores situation recognition and provides a conceptualization and a definition of the problem, which allow for situations of partial temporal definition to be described. The thesis then focuses on investigating how Petri nets can be used for recognising situations. Existing Petri net based approaches for recognition have some limitations when it comes to fulfilling requirements that can be put on solutions to the situation recognition problem. An extended Petri net based technique that addresses these limitations is therefore introduced. It is shown that this technique can be as efficient as a rule based techniques using the Rete algorithm with extensions for explicitly representing temporal constraints. Such techniques are known to be efficient; hence, the Petri net based technique is efficient too. The thesis also looks at the problem of learning Petri net situation templates using genetic algorithms. Results points towards complex dynamic genome representations as being more suited for learning complex concepts, since these allow for promising solutions to be found more quickly compared with classical bit string based representations. In conclusion, the extended Petri net based technique is argued to offer a viable approach for situation recognition since it: (1) can achieve good recognition performance, (2) is efficient with respect to time, (3) allows for manually constructed situation templates to be improved and (4) can be used with real world data to find real world situations. / <p>Anders Dahlbom is also affiliated to Skövde Artificial Intelligence Lab (SAIL), Information Fusion Research Program, Högskolan i Skövde</p>
8

Situation Assessment at Intersections for Driver Assistance and Automated Vehicle Control

Streubel, Thomas 02 February 2016 (has links) (PDF)
The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies. This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished. The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment. / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien. Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt. Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.
9

Pattern recognition based on qualitative representation of signals. Application to situation assessment of dynamic systems

Gamero Argüello, Fco. Ignacio (Francisco Ignacio) 26 June 2012 (has links)
The main focus of situation assessment is to decide on the adequacy of process behaviour with respect to specifications. When is not possible to have a mathematical model to represent the system operation, other non-model-based techniques must be considered. Classification methods are typically proposed as strategies for diagnosis. Here, identification of the functional states is reduced to recognising the current shapes of variables as well-known states, commonly taking advantage of a process expert or past experiences. However, human knowledge is related to concepts and symbols whereas process acquisition systems provide monitoring systems with numerical data. Consequently, these type of knowledge-based decision systems are usually forced to work in a higher level of abstraction using symbolic representations. This thesis deals with the study of classification methods when performing qualitative trends analysis. The aim is to obtain qualitative trends and their classification by means of the extracted knowledge from past experiences. This doctoral dissertation deals with the study of classification methods when performing qualitative trends analysis. The aim is to obtain qualitative trends and their classification by means of the extracted knowledge from past experiences. / El objetivo principal de la evaluación de situaciones es decidir sobre la adecuación del comportamiento del proceso con respecto a las especificaciones. Cuando no es posible tener un modelo matemático para representar el funcionamiento del sistema, otras técnicas deben considerarse. Los métodos de clasificación suelen ser propuestos como estrategias para el diagnóstico. La identificación de los estados funcionales se reduce a reconocer las formas de las variables como estados conocidos, comúnmente adquiriendo conocimiento de un experto o experiencias anteriores. Sin embargo, el conocimiento humano se relaciona con conceptos y símbolos, mientras que los sistemas de adquisición proporcionan datos numéricos. En consecuencia, este tipo de sistemas basados en el conocimiento de decisiones trabajan en un nivel superior de abstracción a través de representaciones simbólicas. Esta tesis aborda el estudio de métodos de clasificación de las tendencias cualitativas. El objetivo es clasificarlas por medio del conocimiento extraído de las experiencias pasadas.
10

Situation Assessment at Intersections for Driver Assistance and Automated Vehicle Control

Streubel, Thomas 20 January 2016 (has links)
The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies. This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished. The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment.:Contents List of Figures Acronyms 1 Introduction 1.1 Motivation 1.2 Outline 2 Fundamentals 2.1 Traffic Intersections 2.2 Situation Assessment 2.3 Prediction of Driver Intention 2.3.1 Methods Overview 2.3.2 Hidden Markov Models 2.4 Localization 3 Driving Behavior 3.1 Data Analysis 3.1.1 Data selection and processing 3.1.2 Results 3.1.3 Conclusion 3.2 Naturalistic Driving Study 3.2.1 Background 3.2.2 Methods 3.2.3 Results 3.2.4 Discussion and Conclusion 4 Prediction Algorithm 4.1 Framework 4.2 Input data 4.3 Evaluation 4.4 Validation 4.5 Conclusion 5 System Approach 5.1 Sensing 5.2 Situation analysis 5.3 Prediction 5.3.1 Implementation 5.3.2 Graphical User Interface (GUI) 5.3.3 Testing and Outlook 6 Conclusion and Outlook Bibliography / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien. Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt. Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.:Contents List of Figures Acronyms 1 Introduction 1.1 Motivation 1.2 Outline 2 Fundamentals 2.1 Traffic Intersections 2.2 Situation Assessment 2.3 Prediction of Driver Intention 2.3.1 Methods Overview 2.3.2 Hidden Markov Models 2.4 Localization 3 Driving Behavior 3.1 Data Analysis 3.1.1 Data selection and processing 3.1.2 Results 3.1.3 Conclusion 3.2 Naturalistic Driving Study 3.2.1 Background 3.2.2 Methods 3.2.3 Results 3.2.4 Discussion and Conclusion 4 Prediction Algorithm 4.1 Framework 4.2 Input data 4.3 Evaluation 4.4 Validation 4.5 Conclusion 5 System Approach 5.1 Sensing 5.2 Situation analysis 5.3 Prediction 5.3.1 Implementation 5.3.2 Graphical User Interface (GUI) 5.3.3 Testing and Outlook 6 Conclusion and Outlook Bibliography

Page generated in 0.1334 seconds