• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of CRISPR/Cas9 to edit genes affecting seed morphology traits in wheat

Pan, Qianli January 1900 (has links)
Master of Science / Genetics Interdepartmental Program / Eduard D. Akhunov / The CRISPR/Cas9-based genome editing system holds a great promise to accelerate wheat improvement by helping us to understand the molecular basis of agronomic traits and providing means to modify genes controlling these traits. CRISPR/Cas9 is based on a synthetic guide-RNA (gRNA) that can guide Cas9 nuclease to specific targets in the genome and create double strand breaks (DSB). The DSB are repaired through the error-prone non-homologous end joining process causing insertions or deletions that may result in loss-of-function mutations. Here, we have developed an effective wheat genome editing pipeline. We used next-generation sequencing (NGS) data to estimate genome editing efficiency of many gRNAs using the wheat protoplast assay and choose the most efficient gRNAs for plant transformation. We successfully applied this pipeline to five wheat orthologs of the rice yield component genes that have been identified previously. We obtained edited plants for all these genes and validated the effect of the mutations in TaGW7 on wheat traits, which showed trends similar to those in rice. These results suggest that transferring discoveries made in rice to improve wheat is a feasible and effective strategy to accelerate breeding.
2

A Comparative Analysis Of The Recent Cement Grinding Systems With Particle-based Influences On Cement Properties

Fidan, Berkan 01 February 2011 (has links) (PDF)
The conventional cement grinding system, the ball mill, has very poor efficiencies in spite of innovative improvements. For this purpose, development of new techniques, which allow proper size reduction and uniform particle size distribution with less specific energy consumptions, have become a necessity. The aim of this study is to make a comparative analysis of the fairly new cement grinding technologies, COMFLEX&reg / Grinding System, Roller Press and HOROMILL&reg / , at the same cement production plant with the same raw materials. In this context, CEM I 42.5 R type cement was produced with a fixed Blaine fineness of 3600 (&plusmn / 100) cm2/g at three different grinding units. The same raw materials, clinker and gypsum, and identical feeding ratios, 95% and 5%, were used to produce cement. Accordingly, these different grinding techniques were inspected with respect to the microstructural properties of cement particles, and the relative chemical, physical and mechanical properties of products. It was found that the main cement grinding parameters, specific surface area and sieve residue, do not show expected relation and change with each grinding system due to differences in the size reduction technique. Moreover, strength and other hardened mortar properties are directly affected by the liberation conditions of reactive grains at grinding stages.High capacity and low specific energy consumption i.e. the breaking and cracking efficiency of the roller press and higher grinding performance of the ball mill promoted the COMFLEX&reg / system. On the other hand, the roller press was clearly advantageous at early strength performances with moderate specific energy usages during grinding. Nonetheless, it also had drawbacks like higher water demand and earlier setting times (which mean higher hydration temperatures). When the wideness and sharpness of classification results were considered, HOROMILL&reg / gave better results with high circulation and efficient air classification design / although there were weaknesses of the system such as lower capacity and higher specific energy consumption rate.
3

Integrating field and optical RapidEye data for above-ground biomass estimation: A study in the tropical peat-swamp forest of Sebangau, Central Kalimantan, Indonesia

Sarodja, Damayanti 20 December 2018 (has links)
No description available.
4

Development and Demonstration of a Standard Methodology for Respirable Coal Mine Dust Characterization Using SEM-EDX

Sellaro, Rachel Mary 09 July 2014 (has links)
The purpose of this thesis is to examine the potential for a more comprehensive method of analysis of coal mine dust. Respirable dust is specifically of interest due to its ability to cause occupational lung disease when miners are overexposed to airborne concentrations. A detailed standard methodology to characterize respirable mine dust is carefully investigated with the use of scanning electron microscopy with energy dispersive x-ray (SEM-EDX). In addition to a thorough description of the developed particle level characterization approach, the method is demonstrated with underground respirable dust samples collected from an underground coal mine in Central Appalachia. Results of this thesis indicate that a comprehensive dust characterization method is possible and can be efficient and effective, when standardized. This analytical approach uses measured compositions, dimensions, and shapes to produce an abundance of data in even a single sample of dust. Verification results show the method is suitable for analysis of respirable particles of common coal mine mineralogy and analysis of many samples in a timely manner. The results obtained from the underground samples in Central Appalachia reveal the quantity of information which can be generated using the developed method. The amount of data which is acquired using the more comprehensive dust characterization method may aid in understanding the health effects of various dust characteristics. / Master of Science
5

Evaluation Of Cement Mortars By Ultrasound

Paksoy, Nesibe Gozde 01 January 2006 (has links) (PDF)
Ultrasonic testing of concrete is often used for the assessment of its uniformity, strength, modulus of elasticity, durability and etc. therefore, the related parameters of testing such as the transducer frequency, the specimen geometry and etc. are well-known. On the other hand, most of the concrete properties are affected by the cement and the mechanical as well as some durability properties of cements are determined through cement mortars. Applications of ultrasound on determining the properties of cement mortars are quite limited. Therefore, the required specimen dimensions, transducer frequencies have not yet been established for cement mortars. In this study, ultrasonic pulse velocity (UPV) of mortars was determined with different transducers of different frequencies for different size ans shape of specimens. Within the scope of the experimental program, three different ultrasonic frequencies (54 kHz, 82 kHz, and 150 kHz) were utilized and the relation between ultrasonic testing frequency and specimen shape was experimentally investigated. It was concluded that the mechanical properties of mortar was adversely affected by the water-to-cement ratio. It was also observed that, when the length/wavelength ratio increases, the measured UPV with different transducer frequencies tends to converge to a single value. Finally, it was also concluded that an increase in moisture content of the mortar mixtures causes an increase in UPV and a decrease in compressive strength.
6

Compression wood formation in Pinus strobus L. following ice storm damage in southwestern Virginia

Hook, Benjamin Austin 21 May 2010 (has links)
To evaluate the compression wood response in eastern white pine (Pinus strobus L.) following a severe ice storm in 1994, 47 trees were felled in 2007 and cross-sectional samples were collected at 0.5 (±0.2) m stem height. The disks were sanded and digitally scanned, and the cross-sectional area (mm2) of compression wood within each tree-ring was quantified using image analysis software. Topographic data (slope, aspect, and elevation) were also recorded for each P. strobus tree, along with a modified competition index. Wood anatomical features were also quantified in the three years before and after the storm along a tree diameter gradient. Although tree age was relatively constant in this stand, tree size was influenced by topographic position; larger trees grew in the valley while smaller trees were found growing in thin soils at the mid-slope position. When the cohort was about 25 years old, ice deposition caused a heterogeneous compression wood response which was highly related to tree size. In the thirteen years following the ice storm, the 6 – 9 cm (2007) diameter class formed significantly more compression wood area than any other, followed by the 10 – 13 cm (2007) diameter class. The tree diameter range that formed the most post-storm compression wood was 4 – 8 cm at the time of the storm, suggesting that this diameter range was most affected by 8.5 cm of ice loading in P. strobus. Trees > 18 cm in 1994 did not form any compression wood after the storm, but many experienced a growth release to fill canopy gaps. Topographic variables did not influence compression wood formation directly, but only one plot was sampled so these results are tenuous. However, topography did influence tree size which was the most important predictor in compression wood. There was no relationship between compression wood area and competition index. Due to compression wood formation after the ice storm, cell wall thickness and cell circularity were significantly higher in the 1994 tree-ring than in other rings examined (1991 – 1993, 1995, and 1996). Tracheid and lumen diameters were significantly smaller in compression wood cells (30.5 and 19.5 μm, respectively) than in normal wood (36.8 and 28.4 μm, respectively); opposite wood cells were intermediate in size (32.4 and 24.4 μm, respectively). Due to small tracheid size, compression wood contained significantly more cells mm⁻¹ (33) than normal wood (27), but no significant differences in cell wall area. Therefore, cumulative cell wall area occupied 47% of the cross-section in compression wood tissue on average, compared to 31% in normal wood. Dispersing tree weight across a greater surface area may help compression wood to prop up a bent tree, but reduced lumen area may also impact hydraulic conductivity in the stem. / Master of Science
7

Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals

Song, Qing 26 August 2005 (has links)
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals Qing Song 216 pages Directed by Dr. Z. John Zhang The correlationship between magnetic properties and magnetic couplings is established through the investigations of various cubic spinel ferrite nanocrystals. The results of this thesis contribute to the knowledge of size and shape controlled synthesis of various spinel ferrites and core shell architectured nanocrystals as well as the nanomagnetism in spinel ferrites by systematically investigating the effects of spin orbital coupling, magnetocrystalline anisotropy, exchange coupling, shape and surface anisotropy upon superparamagnetic properties of spinel ferrite nanocrystals. A general synthetic method is developed for size and shape control of metal oxide nanocrystals. The size and shape dependent superparamagnetic properties are discussed. The relationship between spin orbital coupling and magnetocrystalline anisotropy is studied comparatively on variable sizes of spherical CoFe2O4 and Fe3O4 nanocrystals. It also addresses the effect of exchange coupling between magnetic hard phase and soft phase upon magnetic properties in core shell structured spinel ferrite nanocrystals. The role of anisotropic shapes of nanocrystals upon self assembled orientation ordered superstructures are investigated. The effect of thermal stability of molecular precursors upon size controlled synthesis of MnFe2O4 nanocrystals and the size dependent superparamagnetic properties are described.
8

Torrefaction and grinding of lignocellulosic biomass for its thermochemical valorization : influence of pretreatment conditions on powder flow properties / Torréfaction et broyage de biomasse lignocellulosique pour sa valorisation thermochimique : influence des conditions de prétraitement sur les propriétés d'écoulement des poudres

Pachón-Morales, John Alexander 11 June 2019 (has links)
Une technologie prometteuse pour répondre à la demande croissante en énergie renouvelable est la gazéification de biomasse lignocellulosique pour la production de biocarburants de deuxième génération. Ce procédé nécessite une alimentation en biomasse sous forme de poudre. Les problèmes de convoyage et de manipulation liés à la faible coulabilité de la biomasse broyée sont un verrou pour l’industrialisation des procédés BtL. La torréfaction comme procédé de prétraitement, en plus d'augmenter densité énergétique de la biomasse, peut influencer également les propriétés des particules obtenues après broyage, et en conséquence, l’écoulement des poudres. L'évaluation de l'écoulement des poudres de biomasse sous différentes conditions de consolidation est essentielle pour concevoir des technologies de manipulation et de convoyage efficaces.L'objectif de ce travail est d'évaluer l'effet des conditions de torréfaction et de broyage sur l’écoulement de poudres de biomasse. Une première partie consiste en une étude expérimentale dans laquelle la coulabilité d'échantillons torréfiés sous différentes intensités a été évaluée à l'aide d'un appareil de cisaillement annulaire. La coulabilité est corrélée à l'intensité de la torréfaction (mesurée par la perte de masse globale) pour deux essences différentes. La forme des particules semble être le paramètre qui influence de manière prédominante la coulabilité des poudres à l'état consolidé. La caractérisation de la coulabilité à l’état non consolidée a été effectuée à l'aide d'un tambour rotatif par l’analyse des avalanches des poudres. Des corrélations entre les caractéristiques des particules et la coulabilité sont ainsi établies. La modélisation de l'écoulement de la biomasse à l'aide de la Méthode des Éléments Discrets (DEM) constitue une deuxième partie de cette recherche. La taille submillimétrique des particules de biomasse, ainsi que leur faible densité, leur forme allongée et leur comportement cohésif sont des défis pour l’implémentation d’un modèle de réaliste d’écoulement particulaire en DEM. Un modèle DEM des particules de biomasse est mis en œuvre à l'aide d'une représentation simplifiée (assemblement de sphères) à gros grains de la forme des particules, ainsi que d'un modèle de force cohésif. Une procédure systématique de calibration des paramètres DEM permet d'obtenir un ensemble de paramètres ajustés. L'évolution expérimentale des contraintes de cisaillement d’une poudre dans un état consolidé peut alors être reproduite de façon réaliste. De même, le comportement d’avalanche des poudres dans un tambour tournant est également bien reproduit par les simulations, de façon qualitative et quantitative. Ces résultats mettent en évidence le potentiel des simulations DEM pour étudier l'effet des caractéristiques des particules, qui sont influencées par la torréfaction et les conditions de broyage, sur le comportement d'écoulement de la biomasse en poudre. / Gasification of lignocellulosic biomass for production of second-generation biofuels is a promising technology to meet renewable energy needs. However, feeding and handling problems related to the poor flowability of milled biomass considerably hinder the industrial implementation of Biomass-to-Liquid processes. Torrefaction as pretreatment step, in addition to improving energy density of biomass, also affects the properties of the milled particles (namely size and shape) that significantly influence flow behavior. The evaluation of biomass flow characteristics under different flow conditions is essential to design efficient and trouble-free handling solutions.The aim of this work is to assess the effect of the torrefaction and grinding conditions on the biomass flow behavior. A first part consists of an experimental study in which the flow properties of samples torrefied under different intensities were obtained using a ring shear tester. Flowability is correlated to the intensity of torrefaction, as measured by the global mass loss, for two different wood species. Particle shape seems to be the predominant parameter influencing flowability of powders in a consolidated state. Characterization of non-consolidated flowability through avalanching analysis using an in-house rotating drum was also conducted. Correlations between particle characteristics and flow behavior are thus established.The modelling of biomass flow using the Discrete Element Method (DEM) constitutes a second major part of this research. Challenging aspects of biomass particle modeling are their submillimetric size, low density, elongated shape and cohesive behavior. A material DEM model is implemented using a simplified (multisphere) upscaled representation of particle shape, along with a cohesive contact model. A systematic calibration procedure results in an optimal set of DEM parameters. The experimental shear stress evolution and yield locus can then be realistically reproduced. The avalanching behavior of the powders is also well captured by simulations, both qualitatively and quantitatively. These results highlight the potential of DEM simulations to investigate the effect of particle characteristics, which are driven by torrefaction and grinding conditions, on the flow behavior of powdered biomass.
9

Tvar, velikost a proporce dlouhých kostí dolních končetin u lidských populací od pozdní doby kamenné po novověk. / Shape, size and proportions of lower limb long bones among human populations from Eneolithic to the Modern Era.

Šídová, Markéta January 2011 (has links)
Differences in the lifestyle of various populations may lead to changes in the shape of the long limb bones. This involves a reaction to the degree of mechanical and environmental stress acting upon these bones. Our work examined changes in the shape, proportions and size of the lower limb long bones (femur, tibia) over roughly the past five thousand years, or more precisely from the later phase of the Early Stone Age up to the 20th century. We studied the femurs and tibias of a total 520 adult individuals − 313 males and 207 females − from seven different periods or rather archaeological cultures. Our evaluation was based on the external, linear dimensions of the bones studied. Biological parameters were evaluated in relation to sexual dimorphism and lateral asymmetry. We paid special attention to the degree of flattening of the proximal third of the femoral and tibial shafts. Sexual dimorphism differed in individual populations. We found the least statistically significant parameters of sexual dimorphism in the oldest, Eneolithic, samples. In contrast, both sexes differed in the greatest number of parameters in the Early Middle Ages. Lateral asymmetry was most frequently demonstrated for the width dimensions in the case of the femoral and tibial diaphyses, which are in complete concurrence with...
10

Epidemiology of preventable risk factors for non-communicable diseases among adult population in Tigray, Northern Ethiopia

Alemayehu Bekele Mengesha 05 1900 (has links)
The purpose of this study was to assess the epidemiology of preventable risk factors for NCDs among the adult population in Tigray, Northern Ethiopia. A quantitative descriptive cross-sectional design was employed to describe the distribution of behavioural and biological risk factors for NCDs, assess the status of knowledge, perceptions, attitude and behaviour of the study participants for NCDs and their risk factors, and a matched case-control study to identify the determinants of hypertension. The data was collected using a structured questionnaire for the interview, physical measurements including weight and height scales, non-elastic measuring tape for waist and hip circumferences, Omron digital BP apparatus for blood pressure and heart rate; Accutrend Plus for measuring fasting blood glucose, cholesterol and triglycerides. For the descriptive cross-sectional study a total of 2347 participants were included, and for the matched case control study a total of 117 cases and 235 controls participated. Behavioural and biological risk factors were assessed. Only 0.8% of the study participants used optimal fruit serving per day. The prevalence of low level physical activity (<600 MET-minutes/week) was 44.8%. The magnitude of ever alcohol consumption was 66.8%. However, the magnitude of khat chewing and tobacco smoking among the study participants was not as high as the other risk factors i.e. 3.3% and 2.3% respectively. The magnitude of hypertension, central obesity, hyperglycaemia, hypercholesterolemia and hypertriglyceridemia was 9.9%, 22.2%, 3.5%, 30.3% and 32.2% respectively. Factors associated with the risks aforementioned were gender, age, place of residence, education, knowledge status on NCDs, mental stress and others. The status of knowledge on CVDs, breast and cervical cancers, diabetes and their potential risk factors was low and not comprehensive. Misconceptions on NCDs and body size and shape were pervasive. Risky behaviours underlying NCDs were rampant in the study population. Factors related to poor knowledge on NCDs were gender, age, place of residence, education and misconceptions on NCDs. The determinants of hypertension were physical inactivity, duration of alcohol intake, central obesity and mental stress. Awareness raising interventions on NCDs and their risk factors; improving socio-economic status and accessibility to health care settings have to be in place to curb these formidable problems. / Health Studies / D. Litt. et Phil. (Health Studies)

Page generated in 0.0694 seconds