Spelling suggestions: "subject:"low light"" "subject:"low might""
1 |
Classical and Quantum Optical Properties of Slow Light Photonic Crystal WaveguidesPatterson, Mark 03 September 2009 (has links)
Photonic crystals are optical materials where patterning of dielectrics on sub-wavelength length scales creates unusual optical properties such as waveguides with propagation speeds much slower than the vacuum speed of light. In this thesis, I examine the classical and quantum optical properties of such structures, specifically the enhancement of photon emission rate from a single quantum dot embedded in the waveguide (the Purcell Effect) and extrinsic scattering from an injected waveguide mode due to fabrication imperfections. The photon emission rate is found to be significantly enhanced over a large bandwidth in slow light photonic crystal waveguides and I provide detailed results for optimizing the emission properties of a novel photonic crystal ridge waveguide to suite a given application. Using an incoherent scattering theory, I show how slow light propagation enhances extrinsic scattering from unavoidable manufacturing imperfections leading to back scattering and radiation loss that scale with the group velocity v_g, as v_g^{-2} and v_g^{-1} respectively. I then improve the modeling of scattering using a coherent, multiple scattering approach to explain the experimental observation of disordered resonances in slow light waveguide modes. The theoretical predictions show good agreement with experimental measurements. This document provides a thorough introduction to the properties and problems of slow light photonic crystal waveguides. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-03 12:29:01.696
|
2 |
A Study of Pulse Shaping and Slow Light Properties in Strained Saturable Bragg ReflectorLin, Yi-Sheng 11 October 2007 (has links)
In this thesis, we studied chirp response and slow light properties in strained saturable Bragg reflector (SSBR). In the part of chirp response studying, we simulated the chirp response of SSBR of pulses with different chirps, and verified the results of related work. The trend of simulation was consistent with experimental result. Therefore firmly believing the broadening or compression ability of chirped incident pulse in SSBR, the pulse compression ability facilitates the mode-locking in laser cavity and generates more narrow pulse. In the studying of slow light properties in SSBR, a home-made pulse shaper system and a cross-correlator system were demonstrated. We control the chirp of the pulse by pulse shaper, and then pulse enter SSBR and reflect from SSBR, and measure the signal distribution in time domain by cross-correlator, finally we can analyze the properties of slow light of SSBR. We have demonstrated the slow light phenomenon was observed as central wavelength of incident pulse approach to resonance absorption of SSBR. In the aspect of chirp control, contrast with negative chirped incident pulse, slower group velocity with larger group delay for positive chirped incident pulse was observed. This could be attributing to absorption increasing which result from more efficient for creating carrier and less-sensitive to the carrier-scattering effect. In addition, we further study power dependence of slow light properties in SSBR under various incident chirps. Increasing group delay with power of incident pulse was performed. In addition, more group delay under saturation was also characterized and analyzed.
|
3 |
A VARIETY OF SLOW-LIGHT TECHNOLOGIES IN NONLINEAR DISPERSIVE MEDIALee, Myungjun January 2010 (has links)
Over the past few years, researchers have directed a significant amount of effort towards realizing tunable all-optical devices using nonlinear optical methods. It is now possible to exercise dynamic control of the group velocity of light traveling through a wide variety of material systems. The slow and fast light refer to situations in which the group velocity íg of an optical pulse through a dispersive material can be made to be smaller and larger, respectively, than the phase velocity vp = c/n. This ability could overcome the remaining challenge in current optical networks of storing and manipulating an optical signal directly in optical domain so as to avoid a bottleneck due to optical-to-electrical (O/E) and electrical-to-optical (E/O) conversions. The overall purpose of the dissertation is to study novel slow-light systems that provide controlled generation of large pulse delays relative to the pulse width with minimal pulse shape distortion by optimally design resonance profiles of such systems. The system design studies utilize several measures of performance such as the fractional delay, power throughput, and signal distortion under the limited system resource constraints. To this end, powerful data fidelity metrics are required to quantify the performance of tunable delay devices. Here, a new framework for measuring an information velocity and throughput is described and implemented using Shannon mutual information concepts. This new technique is used to investigate trends, trade-offs, and limits in slow light devices, which are physically sensible and in good agreement with analyses obtained using a conventional eye-opening(EO) metric. Using these information-theoretic and/or conventional metrics, we present the quantifying performance of gain-based stimulated Brillouin scattering (SBS) system in optical fibers as well as optical passive devices such as Fabry-Perot, fiber Bragg gratings, and ring resonators. It is shown that combining the SBS gain medium with these passive devices can compensate their respective disadvantages and thus increase delay performance without using additional resource of SBS pump power. The results show the possibility of achieving a fractional delay up to 10 at a signal bandwidth up to tens of GHz.
|
4 |
Nonlinear properties of dense coherent mediaMikhailov, Eugeniy Eugenievich 30 September 2004 (has links)
Properties of coherent media in the regime of
electromagnetically induced transparency (EIT)
are studied.
A study of the shape and width of the EIT resonance is presented
for coherent media with buffer gas.
Observation of an absorption-like resonance for large one-photon detunings in a medium with
buffer gas and its properties are shown.
The regime of ``slow'' and ``fast'' group velocities are studied.
Observation
of narrow resonances with a phase broadened probe field is presented,
and possible application of this regime are outlined.
|
5 |
Manipulating Beam Propagation in Slow-Light MediaHogan, Ryan 28 September 2023 (has links)
Materials with resonant features can have a rapidly changing refractive index spectrally or temporally that gives rise to a changing group index. Depending on the wavelength of the input light, this light can see regimes of normal or anomalous dispersion. Within these regions, the group index can become large, depending on the optical effect used, and give rise to slow or fast light effects.
This thesis covers two platforms that exhibit the use of slow and fast light. Slow and fast light are used to manipulate and enhance other optical effects in question. As the focus of this thesis, we examine a rotating ruby rod and spaceplates based on multilayer stacks, both considered as slow- and fast-light media. Light propagation through each platform is modelled and simulated to compare to the experiment. The simulation results for both platforms match well with the measured experimental effects and show the feasibility and utility of slow or fast light to manipulate or enhance optical effects.
We simulate light propagation in a rotating ruby rod as a rotating, anisotropic medium with thermal nonlinearity using generalized nonlinear Schrodinger equations, modelling the interplay of many optical effects, including nonlinear refraction, birefringence, and a nonlinear group index. The results are fit to experimentally measured results, revealing two key relationships: The photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output.
We observe light propagation through a rotating ruby rod where the light is subject to drag. Light drag is often negligible due to the linear refractive index but can be enhanced by slow or fast light, i.e., a large group index. We find that the nonlinear refractive index can also play a crucial role in the propagation of light in moving media and results in a beam deflection. An experiment is performed on the crystal that exhibits a very large negative group index and a positive nonlinear refractive index. The negative group index drags the light opposite to the motion of the medium. However, the positive nonlinear refractive index deflects the beam along with the motion of the medium and hinders the observation of the negative drag effect. Therefore, it is deemed necessary to measure not only the transverse shift of the beam but also its output angle to discriminate the light-drag effect from beam deflection. This work could be applied to dynamic control of light trajectories, for example, beam steering and velocimetry.
For the following two chapters, we will focus on a different slow-light platform. This platform focuses on optics that we developed and tested that compress the amount of free-space propagation using multilayered stacks of thin films known as spaceplates. We design and characterize four multilayer stack-based spaceplates based on two design philosophies: coupled resonators and gradient descent. Using the transfer-matrix method, we simulate and extract the angular and wavelength dependence of the transmission phase and transmittance to extract and predict compression factors for each device. A brief theoretical investigation is developed to predict resonance positions, spacing, and bandwidth.
We measure the transverse walk-off to extract the compression factor of four multilayer stack-based spaceplates as a function of angle and wavelength. One of the devices was found to have a compression factor of $R=176\pm14$, more than ten times larger than previous experimental records. We increased the numerical aperture of one of the devices by ten times, and we still observed a compression factor of $R=30\pm3$, two times larger than the most recent experimental measurements. We also measured focal shifts up to 800 microns, more than 40 times the device size, typically 10-12 microns thick. The multilayer stack-based spaceplates we studied here show great promise for ultrathin flat optical systems that can easily be integrated into a modern-day imaging system.
|
6 |
Slow Light Effects in Photonic Integrated Circuits with Application to Microwave PhotonicsLloret Soler, Juan Antonio 09 July 2012 (has links)
Esta tesis doctoral tiene como objetivo el diseño y la implementación de dispositivos ópticos novedosos capaces de realizar tareas de procesado de señales de rediofrecuencia, concretamente en las bandas de microondas y milimétricas, explotando para ello efectos de luz lenta que tienen lugar sobre algunos medios físicos que presentan características especiales. Con este propósito, se han investigado estructuras basadas en tecnología de semiconductor en guiaonda, además de estructuras de naturaleza resonante sobre circuitos en silicio y compuestos híbridos fabricados con materiales activos pertenecientes a los grupos III-V sobre silicio. En concreto, se han prouestos diferentes circuitos ópticos capaces de desarrollar tareas propias de desfasador y retardadeo verdadero de banda ancha para señales de radiofrecuncia. El comportamiento de dichos circuitos ópticos bajo estudio se ha caracterizado mediante modelado teórico, quedando éstos adecuadamente validados a través de resultados experimentales. En primer lugar, se han llevado a cabo estudios concernientes a la degradación producida por ruido en estructuras desfasadores formadas por amplificadores ópticos de semiconductor. Como resultado, se ha propuesto una nueva estructura que ha revertido en un rendimiento optimizado en términos de ruido sin que ello suponga una alteración en su funcionnalidad básica como desfasador. Esta estructura desfasadora ha sido el elemento clave en el ensamblado de un filtro elimina banda sintonizable. En segundo lugar, se han utilizado diferentes configuraciones basadas en anillos de silicio con dimensiones micrométricas para el desarrollo e implementación de diferentes procesadores de señal, tales como filtros reconfigurables y sintonizables y retardadores multicanal. Concretamente, se ha introducido un nuevo concepto inspirado en la técnica conocida como SCT, cuyo beneficio redunda en un aumento considerable del ancho de banda útil de las señales de radiofrecuencia a procesar gracias a / Lloret Soler, JA. (2012). Slow Light Effects in Photonic Integrated Circuits with Application to Microwave Photonics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16472
|
7 |
Nonlinear optics in Bragg-spaced quantum wellsJohnston, Wesley James 01 January 2010 (has links)
Bragg spaced quantum wells represent a unique class of resonant photonic materials, wherein a photonic bandgap is created by the periodic spacing of quantum wells and the associated variation in the complex susceptibility (index and absorption) of the material. Interest in BSQWs has grown in the past decade due to their large ultrafast nonlinearities and the corresponding large ultrafast reflectivity changes and transmissivity. These nonlinearities are of particular interest in areas of communication technology, where ultrafast all-optical logic components have become increasingly in demand. This research will further investigate BSQWs and the for the first time effects of spin-dependent nonlinear excitation on their photonic band structures. It will also investigate how these effects can be used in all-optical polarization switching and tunable optical buffer (slow light) applications.
|
8 |
Slow light in two dimensional semi-conductor photonic crystalsGrinberg, Patricio 26 November 2012 (has links) (PDF)
We report on the combination of slow light propagation with the resonance properties of a photonic crystal (PhC) cavity and with the slow mode of a PhC waveguide. We demonstrate theoretically and experimentally that slow light induced by the Coherent Population Oscillation (CPO) effect enables to have small-size and ultrahigh quality (Q) factor cavity, regardless of the technological and design issues. The experimental proof is performed in a L3 2D PhC cavity with semiconductor quantum wells as active, medium in which the CPO effect is induced. We achieve a cavity Q-factor of 520000, which corresponds to an enhancement by a factor 138 in comparison with the original Q-factor of the cavity. We present a theoretical approach to the combination of CPO-based slow light and slow mode in PhC waveguides, showing that the total group index is a multiplication of the group indices associated respectively to the CPO slow light and to the waveguide slow mode. We also set the basis for the experimental demonstration by designing and fabricating samples in the clean room facilities of LPN and addressing the challenging issue of coupling and extracting light in and from the waveguides. A particular design of the PhC in the waveguide is issued as a grating that allows to couple light perpendicularly to the plane of the PhC from free space. The vertical coupler has also been designed and fabricated along the waveguide and has been experimentally characterized. Slow light based on CPO effect in the PhC waveguides is always under experimental investigation.
|
9 |
A study of coherent nonlinear processes in dense media with continuous and pulsed laser fieldsZhang, Aihua 2009 May 1900 (has links)
Coherent nonlinear effects such as Electromagnetically Induced Transparency
(EIT), Coherent Population Trapping (CPT), and Slow light are studied in thermal
Rb vapor by both continuous and pulsed laser fields. This work primarily includes
three parts: (I) mode-locked rubidium laser and its applications (II) enhanced coupling
between optical and sound waves in the forward direction via ultra-slow light
(III) optical steering via ultra-slow light in rubidium vapor.
In part(I), I describe the construction and study of a mode-locked rubidium laser
operating at the Rb D1 line using an active mode-locking technique inside the laser
cavity. The mode-locked laser field is used to observe coherent effects in a dense
rubidium gas.
In part(II), I experimentally demonstrate enhanced acoustic-optic coupling that
occurs when the velocity of sound is close to the group velocity of light. Dragging of
the light by effective motion of the gas in a Rb cell is the origin of enhanced coupling.
Good agreement between theory and experiment is found.
In part(III), I experimentally demonstrate optical beam deflection in coherently
driven rubidium vapor due to the steep refraction index profile in the region of EIT.
|
10 |
Study of White Light Cavity Effect via Stimulated Brillouin Scattering Induced Fast Light in a Fiber Ring ResonatorYum, Ho Nam 2009 August 1900 (has links)
Techniques to control dispersion in a medium have attracted much attention due
to potential applications to devices such as ring laser gyroscopes, interferometric
gravitational wave detectors, data buffers, phased array radars and quantum information
processors. Of particular interest is an optical resonator containing a medium with an
anomalous dispersion corresponding to fast-light, which behaves as a White Light
Cavity (WLC). A WLC can be tailored to improve the sensitivity of sensing devices as
well as to realize an optical data buffering system that overcomes the delay-bandwidth
product of a conventional cavity.
This dissertation describes techniques to tailor the dispersion for fast-light in
intracavity media. We present first a demonstration of fast-light in a photorefractive
crystal. When placed inside a cavity, such a medium could be used to enhance the
bandwidth of a gravitational wave detector. We then describe how a superluminal laser
can be realized by adding anomalously dispersive medium inside a ring laser. We
identify theoretical conditions under which the sensitivity of the resonance frequency to a change in the cavity length is enhanced by as much as seven orders of magnitude. This
paves the way for realizing a fast-light enhanced ring laser gyroscope, for example. This
is followed by the development of a novel data buffering system which employs two
WLC systems in series. In this system, a data pulse can be delayed an arbitrary amount
of time, without significant distortion. The delay time is independent of the data
bandwidth, and is limited only by the attenuation experienced by the data pulse as it
bounces between two high-reflectivity mirrors. Such a device would represent a
significant breakthrough in overcoming the delay-time bandwidth product limitation
inherent in conventional data buffers.
We then describe our experimental effort to create a fiber-based WLC by using
stimulated Brillouin scattering (SBS). Experimental results, in agreement with our
theoretical model presented here, show that the WLC effect is small under the conditions
supported by current fiber optic technology. We conclude that future efforts to induce a
large WLC effect would require fibers with high Brillouin coefficient and low
transmission loss, as well as optical elements with very low insertion loss and high
power damage thresholds.
|
Page generated in 0.0533 seconds