• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion?

Clark, E.R., Helliwell, R.J., Bailey, M.A., Hemmings, K.E., Bridge, K.I., Griffin, K.J., Scott, D.J.A., Jennings, L.M., Riches-Suman, Kirsten, Porter, K.E. 06 May 2022 (has links)
Yes / (1) Abdominal aortic aneurysm (AAA) is a silent, progressive disease with significant mortality from rupture. Whilst screening programmes are now able to detect this pathology early in its development, no therapeutic intervention has yet been identified to halt or retard aortic expansion. The inability to obtain aortic tissue from humans at early stages has created a necessity for laboratory models, yet it is essential to create a timeline of events from EARLY to END stage AAA progression. (2) We used a previously validated ex vivo porcine bioreactor model pre-treated with protease enzyme to create "aneurysm" tissue. Mechanical properties, histological changes in the intact vessel wall, and phenotype/function of vascular smooth muscle cells (SMC) cultured from the same vessels were investigated. (3) The principal finding was significant hyperproliferation of SMC from EARLY stage vessels, but without obvious histological or SMC aberrancies. END stage tissue exhibited histological loss of α-smooth muscle actin and elastin; mechanical impairment; and, in SMC, multiple indications of senescence. (4) Aortic SMC may offer a therapeutic target for intervention, although detailed studies incorporating intervening time points between EARLY and END stage are required. Such investigations may reveal mechanisms of SMC dysfunction in AAA development and hence a therapeutic window during which SMC differentiation could be preserved or reinstated. / This research was funded in part by The Leeds Teaching Hospitals Charitable Foundation (R11/8002). E.R.C. was supported by a PhD studentship from the Engineering and Physical Sciences Research Council (EPSRC; EP/F500513/1). R.J.H. was the recipient of an Intercalated Batchelor of Science Degree in Science award from the Royal College of Surgeons of England. M.A.B.(FS/18/12/33270 and FS/12/54/29671), K.I.B. (FS/12/26/29395), and K.J.G. (FS/11/91/29090) were supported by BHF Clinical Research Training Fellowships.
2

MECHANISMS OF CYCLOOXYGENASE-2-DEPENDENT HUMAN AORTIC SMOOTH MUSCLE CELL PHENOTYPIC MODULATION

Adedoyin, Oreoluwa O 01 January 2014 (has links)
Abdominal aortic aneurysm (AAA) is a disease of the aorta characterized by pathological remodeling and progressive weakening of the vessel resulting in the increased risk of rupture and sudden death. In a mouse model of the disease induced by chronic Angiotensin II (AngII) infusion, progression of AAAs is associated with reduced differentiation of smooth muscle cells (SMCs) at the site of lesion development. In the mouse model, the effectiveness of cyclooxygenase-2 (COX-2) inhibition for attenuating AAA progression is associated with maintenance of a differentiated SMC phenotype. However, the safety of COX-2 inhibitors is currently in question due to the increased risk of adverse cardiovascular events. Thus, it is crucial to identify mediators downstream of COX-2 that may provide new targets for treatment of this disease. Recent studies in humans and mouse models have suggested that the microsomal prostaglandin E synthase (mPGES-1) enzyme, which acts downstream of COX-2, may also be involved in the pathogenesis of the disease. We hypothesized that increased prostaglandin E2 (PGE2) synthesis resulting from the induction of both COX-2 and mPGES-1 may result in reduced differentiation of SMCs, and that disruption of this pathway would preserve the differentiated phenotype. To test this hypothesis, human aortic smooth muscle cells (hASMCs) were utilized to examine the effects of a variety of agents involved in AAA development and the COX-2 pathway. My findings suggest that one of the effects of exposing hASMCs to AngII involves a specific induction of mPGES-1 expression. Furthermore, although different COX-2-derived products may have opposing effects, mPGES-1-derived PGE2 may be the primary prostanoid synthesized by SMCs which functions to attenuate differentiation. Therefore, mPGES-1 inhibition may provide inhibition of PGE2 that is more specific than COX-2 inhibitor treatment and may serve as a therapeutic target for attenuating AAA progression by maintaining a differentiated SMC phenotype.

Page generated in 0.1004 seconds